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PREFACE 

 

This study material is intended to serve as text for reference for the course Mathematical 

Statistics for the first semester course of M. Sc. Degree in Mathematics offered by Karnataka 

State Open University(KSOU), Mysuru.  Here, they study the topics on descriptive statistics and 

inferential statistics at the post graduate level. It is designed primarily for students who have no 

prior knowledge of probability and or statistics is assumed. It provides a well balanced 

introduction to mathematical statistics and probability theory. 

It consists of four blocks; every block consists of four units each. Block I, covers basic 

knowledge of descriptive statistics, the block - II consist of introduction to probability theory, 

random variable and probability functions, mathematical expectation and the concepts of central 

limit theorem. Block - III consists of four units such as some standard discrete and continuous 

Probability Distributions, Sampling Distributions and theory of Estimation. Lastly, the block IV, 

consists of concepts regarding testing of hypothesis for both large and small samples.  

Finally, in this study material there are bound to be misprints, errors and or ambiguities in 

presentation. I am grateful to any reader who notices these to my attention. 

 

         Dr. Bhat Satish Shankar 
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UNIT 1  

INTRODUCTION TO STATISTICS 

 

1.1 Objectives 

The main objective of statistics is to collect, interpret, present and analyse a data obtained from 

statistical surveys. In this unit our aim is to give an idea about data types, methods of collection, 

interpretation etc.  

 

1.2 Introduction 

In ancient days statistics was just pertaining to a state, where state head, or the emperor, or the 

king, would like to know about total population of his state, their economy levels, i.e., how many 

people are of rich class, middle class, poor class, etc. of the population, so that how much tax 

could be collected from them in a year to run state affairs for various reasons. Also, he would like 

to know how much fertile land present in his state, so that how much agricultural production 

could be expected and so on. But nowadays statistics is used in all walks of our life. For eg., it is 

used in various fields such as agriculture, industries, five year planning, defence, sports, budget 

preparation, social science, clinical trials, census-to know total population,  birth rate, death rate, 

literacy rate, economy level, category,  etc. Thus science without statistics does not bear fruit, i.e., 

in present days statistics is an integral part of our life.  

 

1.3 Definitions of statistics: 

‘Statistics is literally defined as a science of averages or a science of counting’. Several authors 

have been defined the term statistics in different ways in the literature. Statistics are defined 

mainly in two senses, namely, singular sense and plural sense. Here important but collective 

thoughts of all the authors have been given in the following two definitions. They are 

a. Croxton –Cowden’s definition of statistics (In Singular sense). 

b. Prof. Horace Secrist’s definition of Statistics (In Plural sense). 

 

1.3a  Croxton –Cowden’s definition of statistics: Statistics may be defined as the science of 

collection, presentation, analysis, and interpretation of numerical data. 

 

1.3b Prof. Horace Secret’s definition of Statistics - Statistics may be defined as an aggregate of 

facts, affected to a marked extent by multiplicity of causes, numerically expressed, enumerated or 

estimated according to reasonable standards of accuracy, collected in a systematic manner, for a 

predetermined purpose and placed in relation to each other. 

 

1.4 Functions of Statistics 

Following are the some important functions of statistics 

i. It simplifies the complexity of the data  

ii. It indicates trends and tendencies 

iii. It compares one set of data with other      

iv. It establishes the relationship between two sets of data 
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v. It guides the management in planning         

vi. It measures the effects of government policies 

 

1.5 Limitations of Statistics: 

i.        It does not deal with qualitative phenomenon  

ii.       It does not deal with single item 

iii.      Statistical laws are not exact     

iv.      It liable to be misused    

v.       It does not reveal entire story         

vi.      Statistical results are true only an average 

 

1.6 Some Terminologies 

i. Population: It is the collection of all facts taken in to consideration under study. Population 

can be finite or infinite. If a population consists of countable number of units, then it is called as 

finite population otherwise, n it is called as infinite population. For example, large scales 

industries in Karnataka state constitute a finite sample where as number of stars in the sky 

constitute a infinite population. 

 

ii. Sample: It is the representative part of the population. It possess the characteristics of the 

population. 

 

iii. Enumerator: The field agents who put the questions in questionnaire 

 

iv. Data: A collection of numerical observations of known facts is called a data.  

 

1.7  Types of Data 

i.  Primary data: It is a firsthand data. It is fresh and originally collected by the investigator. 

 

ii. Secondary data: The data which are published or unpublished or processed by some agency 

already. It is second hand data. 

 

iii. Qualitative data: The data which cannot be measured or expressed numerically but presence 

or absence can be felt are called qualitative data. For eg., blindness, literacy, beauty etc. 

iv. Quantitative data: The data which can be measured or expressed numerically are called 

quantitative data. For eg., height and weight of persons. Wages, prices etc  

 

1.8  Collection or Sources of primary data 

i.   Direct personal investigation  

ii.  Indirect oral interviews  

iii. Information received through agencies 

iv. Mailed questionnaire method  

v.  Schedules sent through enumerators 
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i. Direct personal investigation: The investigator has to go to the field personally for making 

enquiries and soliciting information from the respondents. It is used only if the investigation is 

generally local area. 

 

ii. Indirect oral interviews: This is to be applied when direct personal investigation is not 

practicable either because of unwillingness or reluctance of the individuals. For example, we 

want to solicit information on certain social evils like, if a person addicted to drinking, gambling 

or smoking etc., the person may not respond correctly, in such a case, habits of an individual can 

best be obtained by interviewing his friends, relatives who know him better. 

 

iii. Mailed questionnaire method: This method consists in preparing questionnaire which is 

mailed to the respondents with a request for quick response within the specified time. The success 

of this method based upon is the skill, efficiency, care and the wisdom. 

 

1.8a  Sourcesof Secondary data:  

i.  Published sources  

ii. Unpublished sources 

i. Published sources: There are a number of national such as CSO, NSSO etc., and international 

organizations such as UNO, IMF,WHO etc., which collect information regarding business, trade, 

labour, prices, production, income, health and so on, and publish their findings in statistical 

reports on a regular basis like weekly, monthly, quarterly and yearly. These publications of the 

various offices serve as a very powerful source of secondary data. News papers, magazines, 

internet and periodicals are also come under published sources. 

 

ii. Unpublished sources: These are not openly circulated in the public. They are mentioned as 

records by various government and private organizations, research institutes, research scholars 

and so on. 

 

1.9 Other types of data 

i.  Nominal data: Data representing the presence or absence of attributes in a group of items are 

termed as nominal data. Here, no importance is given to the units assumed. A nominal scale 

represents the absence of an attribute by ‘0’ and its presence by ‘1’ where 0 and 1 have no 

specific meaning. For eg., roll numbers allotted to students of a class. 

 

ii.  Ordinal data: Data representing ordering or ranking of units are called ordinal data. Here, 

importance is given to the units present under study. An ordinal scale arranges the units in either 

ascending order or in descending order and assigns ranks. For eg., allotment of medical or 

engineering seats. 

 

3. Interval data: On interval measurement scales, one unit on the scale represents the same 

magnitude on the trait or characteristic being measured across the whole range of the scale. For 

example, if anxiety were measured on an interval scale, then a difference between a score of 10 
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and a score of 11 would represent the same difference in anxiety as would a difference between a 

score of 50 and a score of 51. Interval scales do not have a "true" zero point, however, and 

therefore it is not possible to make statements about how many times higher one score is than 

another. 

 

4. Ratio data: When a scale consists not only of equidistant points but also has a meaningful 

zero point, then it refers as a ratio scale. If we ask respondents their ages, the difference between 

any two years would always be the same, and ‘zero’ signifies the absence of age or birth. Hence, 

a 100-year old person is indeed twice as old as a 50-year old one. Sales figures, quantities 

purchased and market share are all expressed on a ratio scale. Ratio scales are the most 

sophisticated of scales, since it incorporates all the characteristics of nominal, ordinal, and 

interval scales. As a result, a large number of descriptive calculations are applicable. 

 

1.10  Questionnaire: It is a list of questions relating to the field f enquiry and providing space 

for the answers to be filled by respondents. 

Drafting or Framing a good Questionnaire: 

i.   The size of the questionnaire should be as small as possible.  

ii.  The questions should be simple, clear, brief and unambiguous.  

iii. The questions should be arranged in sequential order .   

iv. The questions should not be lengthy.  

v.  Too personal and sensitive questions should be avoided.   

vi. The questions should not be complex 

 

Schedule: It is the device of obtaining answers to the questions in a form which is filled by the 

enumerators or interviewers in a face to face situation with the respondents. 

 

1.11 Statistical Surveys 

1.11a. Censes Survey or Enumeration: The complete information of each and every unit of the 

population is called censes survey or census enumeration. Here, data are collected from each and 

every unit of the population. The results obtained are generally not very accurate and reliable.  

 

1.11b. Sample Survey: In a sample survey, only a part of the population is considered. The 

results obtained from sample can be used to estimate the population value. It is less expensive, 

less time consuming, requires small number of skilled labours, and the results obtained are 

generally accurate and reliable. 

 Variables: A quantitative characteristics which varies from unit to unit is called a variable. For 

eg., height, weight, price, sales, purchase, volume etc. 

 

Discrete variables: Variables which take only distinct or fixed values are called discrete 

variables. For eg., number of accidents occurring in a city, no. of patients admitted to a hospital 

etc. 
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Continuous variables: Variables which take any numerical value within the specified range are 

called continuous variables. For eg., height, weight, prices, time etc. 

 

Attribute: A qualitative characteristic which varies from unit to unit is called an attribute. For 

eg., richness, colour, beauties etc. 

 

1.12.  Classification.  It is defined as a process of systematic arrangement of data according to 

common characteristics. Classification of data makes data readable and understandable easily. 

 

1.12a. Types of Classification 

There are mainly four types of classification. They are- 

i. Qualitative Classification: Classification with respect to qualitative characteristics (i.e., an 

attribute) is called qualitative Classification. For eg., Classification of population according to 

economy conditions i.e., Rich, middle and poor class people. 

 

ii. Quantitative Classification: Classification with respect to quantitative characteristics(i.e., a 

variable) is called  qualitative Classification. For eg., Classification regarding sales, purchase, 

production and prices of commodities. 

 

iii. Temporal Classification: Classification with respect to time factor is called temporal 

Classification. Time may be in hours, minutes, seconds, years etc. 

 

iv. Spatial Classification: Classification with respect to geographical area or location is called 

spatial classification.  

Further we divide the classification in to following ways. They are-  

 

Dichotomy or dichotomous classification: The process of dividing the data into two classes (or 

categories) with respect to an attribute is said to be dichotomous Classification. For eg., 

Population is divided into sex wise as male and female. 

 

Manifold Classification: The process of dividing the data into more than two  categories with 

respect to an attribute is said to be manifold classification. For eg., for the attribute intelligence, 

the various classes may be, say genius, intelligent, average intelligent, below average, dull etc. 

 

1.13. Tabulation: It is the process of systematic arrangement of classified data in to rows and 

columns or in a tabular form. 

Parts of a Good Statistical table: In general, a good statistical table should contain the 

following parts. They are- 

i. Table Number ii. Title  iii. Captions  iv. Stubs   

v. Body of the table vi. Head note vi. Footnote 
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Table Number: Each and every table should be given a number.  There is no specific place 

allotted for this number.  If can be given at the centre, on top or bottom of the table or even 

towards the top left hand side. 

 

Title: Every table must have a suitable title.  The title must describe briefly, the contents of the 

table.   

 

Captions: Captions refer to column readings.  This explains what the column represents, in the 

table.  There can be one or more columns, depending on the data.  The caption headings are 

written in smaller letters when compared to the title .  This mainly helps to save space. 

 

Stubs: Stubs refer to row readings.  These are written to the left extreme of the table.  They 

explain what the row represents.  Usually in a table, we find more rows than columns. 

 

Body of the Table: The body of the table gives numerical information.  This is the most 

important part of the table.  It contains information represented by the captions and stubs. 

 

Head note: Head note gives a brief explanation of the information in the table.  This is placed 

below the title and enclosed within brackets.  The units of measurement is written in head note, 

like (in million tones), (in ‘000s s of rupees’), (in ’00 of kgs), etc. 

 

Foot note: Foot note is written below the body of the table.  Sometimes complete explanation 

may be lacking in some parts of the table.  The same can be provided in the footnote.  Also, if 

there is any clarification needed in any part of the table it can be done in the footnote. 

 

1.14 Frequency and Frequency distribution 

Frequency: The number times an item or a value of a variable is repeated is called a frequency. 

For eg. A student scored 85 marks in four subjects out of six subjects in an examination, here, 85 

is the value of a variable(Marks) and 4 is the frequency. 

 

Frequency distribution: The systematic allocation of frequencies along with their variable 

values is called frequency distribution. 

 

1.14a.Types ofFrequency distribution 

1.14a.1 Discrete frequency distribution: In a frequency distribution if a variable takes distinct 

values along with their frequencies, then it is said to be discrete frequency distribution. 

Variable :     12   20  35   47  and so on 

Frequency :     5  13   9   12       …… 

 

Example: Prepare a discrete frequency distribution for the following data representing 

height(inches) of 40 persons: 60, 62, 63, 68, 65, 62, 61, 63, 68, 66, 63, 65, 64, 67, 68, 66, 65, 64, 

63, 62, 61, 60, 66, 67, 68, 63, 66, 64, 63, 67, 68, 60, 63, 63, 64, 66, 67, 62, 61, 65. 
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Height in inches Tally mark Frequency (No. of persons) 

60 ||| 3 

61 ||| 3 

62 |||| 4 

63 |||| ||| 8 

64 |||| 4 

65 |||| 4 

66 |||| 5 

67 |||| 4 

68 |||| 5 

         Total = 40 

 

1.14a.2 Grouped frequency distribution: The distribution of frequencies along with their 

classes, where classes are derived by dividing the entire range of values of the variable in to a 

suitable number of groups is called grouped frequency distribution. For eg.,- 

Class :   10 - 19  20 - 29  30 –39 and so on 

Frequency :     5    13      9 …… 

 

Example: Prepare a grouped frequency distribution for the following data representing marks in 

Mathematics of 30 students: 50, 92, 63, 88, 65, 62, 61, 63, 68, 66, 63, 95, 64, 67, 68, 96, 86, 64, 

63, 77, 68, 60, 73, 63, 64, 66, 67, 72, 61, 90. 

Solution: Maximum value = 96; Min.=50;  Range = Max – Min = 96-50=46, let class width =10, 

then No. of class ~ Range/Class width  = 46/10 = 4.6 ~5 class. 

Height in inches Tally mark Frequency(No. of persons) 

50 - 60 |   1 

60 - 70 ||||  ||||  |||| |||| 20 

70 - 80 |||   3 

80 - 90  ||   2 

90 - 100 ||||   4 

 Total= 30 

 

1.14a.3 Continuous Grouped frequency distribution: The presentation of data into continuous 

classes along with the corresponding frequencies is known as continuous frequency distribution. 

Class :   10 - 20  20 - 30  30 – 40  and so on 

Frequency :     5    13      9  …… 

 

Class interval: Dividing the entire range of values of the variable in to a suitable number of 

groups is called classes. A class consists of all number between the lower and the upper class 

limits.  Hence it it’s an interval. 

 



 

 

 

 

12 

Class limits: The end points of classes are known as class limits-the lower end point of the class 

being the lower class limit and the upper end point being the upper class limit. For eg.,in a class( 

10 – 20 ), lower limit =10 and upper limit= 20. 

 

Width of the class interval: The difference between lower and upper class limits is called width 

or magnitude of the class interval.  

For eg., in the class (10 – 20) class width is equal to 10 i.e,(20 - 10=10).  

In the class (10-14)class width is equal to 5, here both 10 and 14 are included. 

 

Class frequency: The number of observations corresponding to a particular class is called the 

frequency of the class. 

 

Class mark (or midpoint of the class): Class mark is the midpoint of a class and is given by 

Class mark = (upper limit + lower limit) / 2 

 

Inclusive Class: If both the upper and lower limits of a class are included, then such a class 

interval is known as inclusive class.  

For eg., Class: 10 – 19, 20 – 29, 30 –39, ...; and 0 - 4, 5 – 9, 10-14 etc., are the inclusive classes. 

Inclusive class are of discontinuous in nature.  

 

Exclusive class : If only the lower limit of a class is included whereas the upper limit is excluded 

in that class, then such a class is called exclusive class. For eg., Class :  10 – 20,   20 – 30,    

30 – 40, and so on are exclusive classes. Here, 20 is considered in 2nd class and 30 is considered 

in 3rd and so on. Exclusive classes are of continuous type. 

 

Note: If the values are in decimals or fraction, better consider exclusive class instead inclusive 

class, because we may not be able include some of those values in one or the other inclusive 

class. 

 

Open end class: If one of the class limits is missing then such a class is known as open end class. 

For eg., class: 20 and above, below 10 etc., are open end classes. 

 

1.14b  Basic Principles for framing a grouped frequency distribution: 

1. Define range(R) = H - L , where H->Highest or maximum value, and L ->lowest or smallest 

value in the given set of values of a data. 

2.Generally, define a class width (C.W) as a multiple of five(5)each. 

3.Define number of classes. i.e. size of the class intervals(i or h) =  R/ ( 1+ 3.322log10N      or    

approximately, No. of class = R/C.W. 

4.As far as possible prefer exclusive classes instead inclusive class. Inclusive class can be 

preferred when given values are of integers. 

5. As far as possible minimum 5 class intervals and maximum of 20 classes to be framed. 

6. Class intervals should be so fixed that each class has a convenient mid point. 
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7. As far as possible classes are of uniform in size. 

 

1.15 Graphical Representation of Data 

Objective of studying graphical representation of data is to interpret the data in terms of graphs, 

so that even common man able to understand the changes taken place. When the variables are of 

continuous type or for a continuous frequency distribution suppose to be depicted, then we use 

various graphs to represent them. Graphs are easy to understand and they are attractive too. 

 

Types of Graphs 

i. Histogram     ii. Frequency polygon 

iii. Frequency curves        iv. Ogive curves (cumulative frequency curves) 

 

i. Histogram: Histogram is drawn in such a way that the set of rectangular bars are placed in 

adjacent to each other, so that the total area is directly proportional to the height of the 

rectangular bars. Height of rectangular bars represents the frequency and breadth represents the 

width or magnitude of the class. The skeleton of histogram can be drawn as under. 

                                  Y  

  Scale: X-axis 1cm=10units(say) 

            Y-axis 1cm = a units 

                               f 

 

 
0       

10     20     30     40     50     60   70   80                    X
 

Fig. 6. Histogram  

Construction rules of Histogram 

i. If all the given classes having equal or uniform widths then draw rectangular bars 

vertically and placed them adjacent to each other 

ii.  If the given classes having unequal  class widths, then compute frequency density, 

defined by 

classing correspondthe  of Width

classthe  offrequency 
densityFrequency  . 

Then, draw rectangular bars vertically and placed them adjacent to each other to get the 

histogram. 

 

Important remark. Mode can be computed through Histogram. As in the following mark A. 

B,C and D on Histogram, by considering tallest rectangular bar and the just neighbouring bars.  

Then join A & C and join B & D by straight lines as in the diagram. Straight lines intersect at the 

point O, and then draw OZ, a perpendicular to X axis, and the point at Z on X-axis gives the 

Mode value of the given distribution.  

 

Example. Draw histogram and find the mode from the following 

Age in years: 10-20    20-30 30-40     40-50     50-60    60-70 
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No. of persons:      3       10    16        12   5            2 

Solution. Histogram is drawn below for the above data 

 

                                 Y                       Scale: X-axis 1unit = 10units  

                                                                      Y-axis 1unit = 4units 
 

                            16                      B       C 

                       f    12                      A      D 

                              8 

                              4 

 
0               

10   20      30  Z 40  50   60  70  80   
  X 

Fig. 7. Histogram in which mode is located 

From the above histogram, value of Mode (Z) = 36 years. 

 

ii. Frequency polygon   

Here, as a first step, the class frequencies are to be marked against the class mid points on X-Y 

plane. Then frequency polygon is to be obtained by joining the class frequencies using straight 

lines. This can also be obtained by joining the mid points on the upper side of the rectangular bars 

of histogram. To complete the curve beginning and the end mid points which are joined by doted 

lines.  

 

iii. Frequency curve  

Here, as a first step, the class frequencies are to be marked against the class mid points on X-Y 

plane. Then frequency curve is to be obtained by joining the class frequencies using smooth line 

or by free hand curve. This can also be obtained by joining the mid points on the upper side of the 

rectangular bars of histogram by smooth line. To complete the curve beginning and the end mid 

points can be joined by doted lines. 

 

             Scale: X-axis 1unit=10 units 

                       Y-axis 1unit=4units 

      Y 
 

   16             

 f 12             

     8 

     4                                     

 
0         

10     20      30      40      50       60    70   80          X
 

Fig. 8. Histogram on which Frequency 

polygon is drawn. 

               Scale: X-axis 1unit=10units 

                         Y-axis 1unit=4units 

      Y 
 

16             

 f  12 

8 

4 

         0 

        10    20    30     40    50     60   70    80   90              X    

               Fig. 9 Frequency polygon    
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               Scale: X-axis 1unit=10 units  

                          Y-axis 1unit=4units 

      Y 
 

   16             

 f 12             

     8 

     4                                     

 
0          

10   20    30   40   50    60  70   80                       X
 

Fig. 10. Histogram on which Frequency 

curve is drawn. 

              Scale: X-axis 1unit=10units  

                         Y-axis 1unit=4units 

      Y 
 

     8             

 f  6             

     4 

     2                                     

 
0         

10   20    30    40   50    60   70   80    90           X 

                   Fig. 11 Frequency curve 

 

iv. Ogive(Cumulative frequency Curve) 

Ogive curve is also known as cumulative frequency curve. There, are of two types, one less than 

ogive, which is to be drawn by joining the less than cumulative frequencies against the upper 

limits of the class interval using smooth line; and secondly, more than ogive curves, which is to 

be drawn by joining more than cumulative frequencies against the lower limits of the class 

interval using a smooth line. The intersection of these two curves will yield ‘median’, value of the 

given distribution. That is, draw a perpendicular from the intersection point say O, to the X-axis, 

which cuts or meets the X-axis at the point M, and it is the required median value. 

 

Example. Draw less than and more than ogive and hence find median from it. 

Age in years: 10-20    20-30    30-40         40-50      50-60     60-70 

No. of persons:     3       10      16            12   5            2 

Solution. Consider,  

Age in years: 10-20    20-30           30-40     40-50     50-60    60-70 

No. of persons:     3       10    16        12  5                2 

Less than cf:        3       13             29        41  46      48 

upper limit:          20       30              40               50             60             70 

More than cf:      48       45             35        19  7      2 

Lower limit:         10       20             30               40             50             60         

        Y     scale: X-axis. 1unit = 10 years 

50                                                          Y-axis.  1 unit = 10 persons 

      40             

 Cf 30             

      20                          

     10                            o 

 
0        

10   20    30    40
M

 50    60     70                X
 

Fig. 12. Less than and more than ogive curves 
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Objective questions 

1. Mode can be obtained by the graph called 

a. ogive curves      b. Histogram        c. Simple bar       d. Frequency curves 

2. Median can be obtained  from 

a. ogive curves      b. Histogram        c. Simple bar       d. Frequency curves 

3. Class in which only lower limit is considered is called 

a. inclusive class b. exclusive class d. open end class  d. All the above 

4. Class in which both upper and lower limit are considered is called 

b. inclusive class b. exclusive class d. open end class  d. All the above 

5. Qualitative characteristic is called 

a. variable b. constant c. attribute d. Average 

 

Exercise 

1. Form a discrete frequency distribution from the following 

Weight(kgs.) of new born babies:2.0, 2.0, 2.0, 2.5, 3.0, 3.3, 3.5, 3.1, 2.2, 2.0, 4.0, 3.8, 

2.75,  2.5, 3.0, 3.3, 3.5, 3.1, 2.2, 2.0, 4.0, 3.8, 2.75, 2.0, 2.3, 2.4. 

2. Form a grouped frequency distribution from the following 

Height in cms: 120, 122, 145, 156, 160, 170, 180, 187, 165, 156, 135, 146, 155, 160, 180, 

182, 168, 164, 164, 163, 152, 160, 158, 159, 150, 160, 165, 162, 168, 163, 158, 159, 168, 

164, 165, 160, 166, 170, 172, 169.[hint take class 120-130, 130-140, so on]. 

Hence draw histogram and locate mode. 

3. Form a grouped frequency distribution from the following 

Weight in kgs: 60, 52, 45, 56, 60, 70, 80, 87, 65, 56, 35, 46, 55, 60, 80, 82, 68, 64, 64, 

163, 52, 60, 58, 59, 50, 60, 65, 62, 68, 63, 58, 59, 68, 64, 65, 60, 66, 70, 72, 69, use class 

35-39,40-44, 45-49 and so on. 

4. Draw Histogram and locate the mode from the following 

Marks obtained 10-25 25-40 40-55 55-70 70-85 85-100 

No. of students 2 3 10 6 2 3 

5. Draw ogive curves and locate the median from the following 

Age in years 10-20 20-30 30-40 40-50 50-60 60-70 

No. of persons 12 30 54 36 21 8 
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UNIT 2 

MEASURES OF CENTRAL TENDENCY 

2.1 Objective 

Objective of studying central values is to know the concentration or overall information with 

regard to mass of a data set. In this unit our aim is to give knowledge about various measures of 

central tendency.  

 

2.2 Introduction 

From the previous chapters it is understood that how to collect, classify, analyse and interpret a 

given data either through graphical or by diagrammatic representations. All of they give some 

crude idea about accuracy of the data and thereby it may not be able to draw meaningful and 

reliable conclusion about the distribution of data. Therefore it is the time to think, and interpret 

data more rigorously i.e., either mathematically or algebraically so that more sophisticated 

inference could be drawn. ‘Central tendency’ is one such mathematical technique which deals 

with the study of concentration or density of observations lie at the centre part of the given 

distribution. In other words, central value is a single entity, which gives overall information with 

regard to mass of the data. These are generally termed as ‘averages’. Thus, averages are the 

mathematical formulations which are used to characterize given set of data. Sometimes, these 

averages are also known as location measures as they locate at some specific positions almost. 

 

2.3 Types of Central Measures  

In real life there are a number of data sets available which may or may not have sampling 

fluctuations or they may or may not contain extreme values. In such cases a suitable measure is to 

be used in order to have meaningful conclusions. With this point of view, there are mainly five 

different types of measures of central tendency are defined in the literature. Namely, 

i. Arithmetic Mean   ii. Median  iii. Mode  

iv. Geometric mean  v. Harmonic Mean 

Here we concentrate only on Arithmetic mean, median and mode. 

 

2.3.1 Characteristics of a good/ideal measure of central tendency 

1. It should be rigidly defined. 

2. It should be based on all the observations. 

3. It should be easy to understand and easy to calculate. 

4. It should be used for further mathematical or statistical analysis. 

5. It should be least affected by sampling fluctuations. 

6. It should be least affected by extreme or abnormal values. 

 

2.4 Arithmetic Mean: Arithmetic mean or simply, mean is defined as the ratio of sum of the 

given set of observationssay, nxxx ,...,, 21  to the number of observations (n). It is denoted by ‘AM 

or A or x ’. Symbolically,  
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Arithmetic Mean( x )
n

x...xx

nsobservatioofNumber

nsobservatiogiventheofSum n
 21 . 

x nx
n

i

i



1

 

Note: Above formula for arithmetic mean or simply mean is used for ‘raw data’. 

 

For a frequency data, i.e., if nxxx ,...,, 21 are the set of n observations with respective frequencies 

nfff ,...,, 21 , then the arithmetic mean of the frequency data is given by 

Arithmetic Mean( x )
n

nn

f...ff

xf...xfxf






21

2211  ,  

x Nxf
n

i

ii



1

 

where 



n

i

ifN
1

 . 

 
Example 1: Find the mean of the following 

Marks in English: 67, 78, 65, 74, 72, 70, 75, 80. 

Solution: Let X: Marks in English. Then mean( x ) marks is given by 

x marks625728581
1

./nx
n

i

i 


 

Example 2: Find the mean of the following 

Height in inches 60 61 62 63 64 65 66 67 68 

No. of Students 5 4 10 12 16 10 7 4 3 

 

Solution: Here, let X: height in inches and f: Number of students. Then, we have  

Xi 60 61 62 63 64 65 66 67 68 Total 

Fi 5 4 10 12 16 10 7 4 3 71 

fi xi 300 244 620 756 1024 650 462 268 204 4528 

The mean height is given by 

x Nxf
n

i

ii



1

, where 



n

i

ifN
1  

    = 4528/71 = 63.7746 ≈ 64 inches 

 

Example 3: Find the mean of the following 

Height in cms.(X) 130-

135 

135-

140 

140-

145 

145-

150 

150-

155 

155-

160 

160-

165 

165-

170 

170-

175 

No. of Persons (f) 4 3 6 10 17 25 13 10 5 

Solution: Here, let X: height in inches and f: Number of students. Then, we have  

fi 4 3 6 10 17 25 13 10 5 93=N 

Mid point(xi) 132.5 137.5 142.5 147.5 152.5 157.5 162.5 167.5 172.5 - 
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of class 

fi xi 530 412.5 855 1475 2592.

5 

3937.

5 

2112.

5 

1675 862.5 14452

.5 

The mean height is given by 

x Nxf
n

i

ii



1

, where 



n

i

ifN
1  

                         = 14452.5/93 ≈ 155.4032 cms 

 

2.4.1 Properties of Arithmetic Mean 

Property 1. The algebraic sum of the deviations of set of values taken from their mean is zero. 

Symbolically,   &,xx
n

i

i datarawfor0
1




  .,xxf
n

i

ii datafrequencyfor0
1




 

Proof: Here we prove it in more general case. i.e., consider a frequency data ii f|X , i =1,2,...,n of 

a set of n values. Then by definition, we have 

 Arithmetic Mean( x ) Nxf
n

i

ii



1

 .       (1)  

Consider,   



n

i

i

n

i

ii

n

i

ii fxxfxxf
111

, since x is a constant. 

   = 0 xNxN , ( 



n

i

ifN
1

  , and by using equation (1)) 

Hence proved. 

Note: In the similar way one can prove it for raw data. 

 

Property 2. The algebraic sum of squared deviations of set of values taken from their mean is 

least. Symbolically , 



n

i

ii

n

i

ii Axfxx(f
1

2

1

2 )() , where A , is a constant. 

Proof: Consider a frequency data ii f|X , i =1,2,...,n of a set of n values. Then, we have 





n

i

ii

n

i

ii xAAxfxx(f
1

2

1

2 )() , where, A  is a constant. 

   =  
2

1

)()(



n

i

ii AxAxf  

= 



n

i

ii

n

i

i

n

i

ii AxfAxAxfAxf
11

2

1

2 )()(2)()( , 

Since ( Ax  ) is constant, and 



n

i

ifN
1

, we have 

= ))((2)()(
1

2

1

2 



n

i

ii

n

i

ii NAxfAxAxNAxf  
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= ))((2)()( 2

1

2 NAxNAxAxNAxf
n

i

ii 


 

= 22

1

2 )(2)()( AxNAxNAxf
n

i

ii 


 

= 2

1

2 )()( AxNAxf
n

i

ii 


,  

which implies,  





n

i

ii

n

i

ii Axfxx(f
1

2

1

2 )() .    

Hence proved. 

 

Property 3. Effect of change of origin and change of scale on Arithmetic Mean 

Statement: The arithmetic mean is not independent of change of origin and not independent of 

change of scale. i.e, when   hAxu ii  , where A, the origin and h, the scale are two positive 

constants then uhAx  . 

 

Proof: Consider a frequency data ii f|X , i =1,2,...,n of a set of n values. Then, we have 

                             Arithmetic Mean( x ) Nxf
n

i

ii



1

 .     (1)  

Let iu be a new variable such that   hAxu ii  , where A, the origin and h, the scale, both A and 

h are two positive constants. Then,  

ii huAx 
       (2)

 
On multiplying both sides of equation (2) by fi, and then taking sum over i =1,2,...,n, we get 





n

i

ii

n

i

i

n

i

ii ufhfAxf
111  

Now, dividing throughout by N, we get  

N/ufhAN/xf
n

i

ii

n

i

ii 



11

 , where 



n

i

ifN
1

 

Therefore, by equation(1), Arithmetic mean( x ) is given by   

            (3) 

 

Where, N/ufu
n

i

ii



1

. Since, both ‘A’ and ‘h’ are present in the eqn. (2), it is concluded that the 

mean x , is not independent of change of origin ‘A’, and not independent of change of scale ‘h’.  

 

Example 4: For the data given in example 3, find the mean using property change of origin and 

change of scale. 

uhAx   
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Solution: Let )/h( Axu ii  , where A, the origin and h, the scale and these are two positive 

constants. Here, we assume A = 152.5(middle value in xi, called assumed mean) and h = 5( class 

width), then we have 

fi 4 3 6 10 17 25 13 10 5 93=N 

Mid point(xi) of 

class 

132.5 137.5 142.5 147.5 152.5 157.5 162.5 167.5 172.5 - 

)/55152( .xu
ii
  -4 -3 -2 -1 0 1 2 3 4  

fi ui -16 -9 -12 -10 0 25 26 30 20 54 

The mean height is given by 

uhAx  ,  

where N/ufu
n

i

ii



1

 

Therefore,      

 935455152 /.x   

=> cms4032155.x   

 

Property 4. Combined Mean (Mean of k-sets of data) 

Let there be k sets of random samples of sizes ni, (i =1,2,...,k), each with respective means ix , i 

=1,2,...,k. Then the combined mean of k-sets of data is given by 

 










k

i

i

k

i

ii

k

kk
c nxn

n...nn

xn...xnxn
)x(MeanCombined

1121

2211 . 

Proof: Let )(
111211 nx,...,x,x , )(

222221 nx,...,x,x , )(
333231 nx,...,x,x , . . . , )( 21 kknkk x,...,x,x be the k-sets of 

random samples with respective sample sizes ni, and sample means ix , i =1,2,...,k. Then, we 

have 

11

1

11

1

11

11

xnxnxx
n

i

i

n

i

i  


,       (1) 

Similarly, for 2nd set through k-set, we have 

22

1

2

2

xnx
n

j

j 


,  33

1

3

3

xnx
n

r

r 


, . . ., kk

n

l

kl xnx
k


1

    (2) 

Therefore the combined mean of these k-sets of data is given by 

Combined Mean( cx )
k

n

l

kl

n

r

r

n

j

j

n

i

i

n...nn

x...xxx
k










21

11

3

1

2

1

1

321

 

Then by using equations (1) and (2), we have 
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Combined Mean( cx ) 








k

i

i

k

i

ii

k

kk nxn
n...nn

xn...xnxn

1121

2211  

 

Note. In particular, if k = 2, i.e., for two sets of data, combined mean of (n1+n2) observations is 

given by   

Combined Mean( cx )
21

2211

nn

xnxn




 . 

 

Example 5: In a class, of 55 students, the mean marks of 25 girls is 68.3 and mean marks of 30 

boys is 65.8. Find the mean marks of 55 students. 

 

Solution: Givenn1= 25 girls and n2=30 boys; 1x =68.3, the mean marks of girls and 2x =65.8, the 

mean marks of boys. Therefore the combined mean of (n1+n2)=55 students is given by 

   cx
21

2211

nn

xnxn




  

   =
55

8653036825 .. 
= marks9466.

 
 

2.5 Weighted Arithmetic Mean 

In real life, not all observations have the same importance. i.e., each observation has its own 

relative importance. In such a case simple arithmetic mean over estimates the average.  

Therefore, in order to have more stable result for the average one could use weighted arithmetic 

mean.  

Thus, if nxxx ,...,, 21 are a set of n observations with respective weights nwww ,...,, 21 , then 

weighted arithmetic mean of this data is given by 

Weighted Arithmetic Mean( wx )
n

nn

w...ww

xw...xwxw






21

2211 ,  

 

wx 



n

i

i

n

i

ii wxw
11

 

 

Example 6:Find simple and weighted arithmetic means for the following 

xi 60 65 70 64 66 67 68 

wi 5 4 10 16 7 4 3 

Solution: To find simple mean and weighted arithmetic mean, we have 

xi 60 65 70 64 66 67 68   460 = Σxi 

wi 7 5 1 6 4 3 2     28 = Σwi  

xi wi 420 325 70 384 264 201 136 1800 = Σwixi  
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Simple arithmetic mean  x units71657460
1

./n/x
n

i

i 


    (1) 

Weighted Arithmetic Mean is given by 

wx 



n

i

i

n

i

ii w/xw
11

= 1800/28=64.2857 units   (2) 

From (1) and (2), it is observed that ( wxx  ), which means, simple mean slightly over estimates 

the average value.  

 

Example 7: Find simple arithmetic mean and weighted arithmetic mean of first n natural 

numbers, where weights being the corresponding numbers. 

 

Solution: We know that first n natural numbers are 1, 2, 3, . . ., n; and since weights are the 

corresponding numbers, we have 

xi 1 2 3 . . . n 

wi 1 2 3 . . . n 

Simple arithmetic mean n/xx
n

i

i



1

 

 
  

  units.21

21

321

,/n

n//nn

n/n...







    

Now, to find weighted Arithmetic Mean( wx ), we have 

wi xi 12 22 32 . . . n2 

Therefore, we have 

   
  

 
  units.312

21

6121

2121 222

11

,/n

/nn

/nnn

n.../n...,

w/xwx
n

i

i

n

i

iiw










 


 

 

Example 7: Find weighted arithmetic mean of first n natural numbers, where weights being the 

corresponding but opposite numbers. 

 

Solution: We know that first n natural numbers are 1, 2, 3, . . ., n; and since weights are the 

corresponding opposite numbers, we have 

xi 1 2 3 . . n-1 N 

wi n n-1 n-2 . . 2 1 

Consider,    
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wi xi n.1 2.(n-1) 3(n-2) . . 2.(n-1) n.1 

Therefore, 


n

i

ii xw
1

= n.1 +2(n-1) +3(n-2) +  ...  + 2(n-1) + n.1 

         =   



n

i

ini
1

1 =   



n

i

ini
1

21  

        =   



n

i

n

i

iin
1

2

1

1  

        =        6121211 /nnn/nnn   

        =    621 /nnn     

Now, to find weighted Arithmetic Mean( wx ), we have 

     
  

 
  units.32

21

621

21621

11

,/n

/nn

/nnn

n...//nnn

w/xwx
n

i

i

n

i

iiw










 


 

 

2.6 Merits and demerits of Arithmetic Mean 

Arithmetic mean has few merits (advantages) and demerits (disadvantages). They are given in the 

form of table. 

Merits Demerits 

1. It is based on all the 

observations. 

2. It is easy to understand and easy 

to calculate. 

3. It is rigidly defined. 

4. It can be used for further 

algebraic treatment. 

5. It is least affected by sampling 

fluctuations. 

1. It cannot be calculated even if one observation 

is missing. 

2. It cannot be calculated for frequency 

distributions with ‘open end class’ at the tails, 

for eg., less than 20, more than 80, etc 

3. It cannot be used to analyse qualitative 

characteristics such as honesty, beauty, etc. 

4. It is highly sensitive to extreme values. 

5. It cannot be calculated graphically. 

 

2.7  Median(M or Md) 

Definition: Median is the value of a variable which divides the entire distribution into two equal 

parts. In other words, median is the value which exceeds 50% and exceeded by 50% of the given 

set of values, such that it lies exactly at the centre part of the given distribution. In simple, it is 

the middle most value in the given distribution. It is denoted by M or Md.  

 

2.7.1 Merits and demerits of Median 
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Median has few merits (advantages) and demerits (disadvantages). They are given in the form of 

table. 

Merits Demerits 

i. It is rigidly defined. 

ii. It can be calculated even if one 

observation is missing. 

iii. It can be calculated for frequency 

distributions with open end class. 

iv. It is not at all sensitive to extreme values  

v. It can be calculated for both quantitative 

and qualitative data. 

vi. It can be obtained graphically. 

vii. In some cases it can be located merely by 

inspection 

a. Since it is not based on all the 

values, result may not be 

reliable and thus sometimes it is 

called insensitive. 

b. It cannot be used for further 

algebraic treatment. 

c. It is difficult to calculate as it 

requires ordered data. 

d. It is highly affected by 

fluctuations of values. 

 

 

2.7.2 Computation of Median  

Case (1): Raw Data  

As a first step, arrange the data (i.e., array) either in ascending and descending order of 

magnitude. Then,  

a. Median is the Middle value, if there are ‘odd number’ of values in the data 

b. Median is the mean of two middle values, if ‘even number’ of values are present in the 

data. 

Or, we can use the formula,  
nd

n
M 







 


2

1
term in the array  

where n, the number of observations in the data. 

 

Example 22: Find the median of 10, 22, 15,16,18 

Solution: Array: 10, 15, 16, 18, 22 

Since n=5 is odd, we have,  

Median(M)= middle value in array= 3rd term =16 units 

Or,   

nd
n

M 






 


2

1
term in the array  

        = rd3
2

6

2

15








 
nd

term in the array 

Implies,    Median = 16 units. 

Example 23: Find the median of 10, 22, 15, 16, 18, 25, 46, 22 

 

Solution: Array: 10, 15, 16, 18, 22, 22, 25, 46 

Since n = 8 is even, we have,  
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Median(M) = Mean(two middle values) in array = (18+22)/2 =20 units 

 

Or,  

nd
n

M 






 


2

1
term in the array  

        = th.54
2

9

2

18








 
nd

term in the array 

Implies,      

 Median(M)= 20
2

40

2

2218

2

54











 
arrayin

termterm thth

units 

 

Case 2: Median for discrete frequency data 

Median for discrete frequency data ii f|X , i =1,2,...,n ; can be obtained by the following steps. 

  

Step 1. Find the cumulative frequencies(CFs) for the discrete frequency data. 

Step 2. Find 






 

2

1N
, where .fN

n

i

i



1

 

Step 3. Find a CF ≥ 






 

2

1N
, i.e., a CF which is just more than or equal to 







 

2

1N
. 

Step 4. Thus median(M) is a value of the variable X(say), which corresponds to CF, obtained in 

3rd step.  

 

Example 23: Find the median of the following 

xi:  7 10 15 18 20 22 

fi: 5 7 10 12 8 4 

Solution: Given discrete frequency data  

xi:  7 10 15 18 20 22 

fi: 5 7 10 12 8 4 

CFs: 5 12 22 34 42 46 

Since, ,fN
n

i

i 46
1




we have  

523
2

47

2

146

2

1
.

N











 
 

(23.5)th term lies in the CF 34.( i.e., as CF = 34 > 23.5).  

=> Median(M) = 18 units. 

 

Case 3. Median for grouped frequency data 

Consider the grouped frequency data iji f|XX  , i =1,2,...,n ; then, median can be obtained by 

the following steps.   

Step 1. Find the cumulative frequencies(CFs) to the given data. 
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Step 2. Find 








2

N
, where .fN

n

i

i



1

 

Step 3. Find a CF ≥ 








2

N
, i.e., a CF which is just more than or equal to 









2

N
. 

Step 4. Find a class interval, which corresponds to CF, obtained in 3rd step, called median(M) 

class. 

Step 5. Once getting the median class, use the following formula to compute median value. i.e., 

f

h
C

2

N
LM 








  

Where, L, denote the lower limit of median class 

C, the cumulative frequency of class, just preceding(previous) to median class 

h, the width of median class 

f, frequency of the median class 

 

Note: The above median formula holds good only for the grouped frequency distribution with 

continuous (i.e., exclusive type) class intervals. If the classes are of inclusive type, then they must 

be get converted to inclusive type before applying the median above formula. This will influence 

on the value of ‘L’, in the above formula. 

 

Example 24: Find the median of the following 

Weight in kgs. 10-20 20-30 30-40 40-50 50-60 60-70 70-80 

No. of Persons 3 5 10 18 9 7 2 

Solution: To compute median, we have 

Weight in kgs. 10-20 20-30 30-40 40-50 50-60 60-70 70-80 Total 

No. of Persons 

fi 

3 5 10 18 9 7 2 54=N 

Cumulative 

Frequency(CFs) 

3 8 18 36 45 52 54  

Now, N/2=54/2=27, => 27th term lies in the CF 36.(i.e. CF=36 > 27=N/2).  

=> Median class= 40-50.  

Here, L=40, h=10, C=18, f=18. Therefore, the Median(M) weight is given by 

f

h
C

2

N
LM 








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  kgs45
18

10
187240 

  
Example 24: Find the missing frequency if the median of the distribution is 3.76 units 

Family size 1-3 3-5 5-7 7-9 9-11 

No. of Persons 7 8 ? 2 1 

Solution: Let the missing frequency be ‘y’  

Family size 1-3 3-5 5-7 7-9 9-11 
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No. of Persons 7 8 y 2 1 

Less than cumulative frequency 7 15 15+ y 17+ y 18+ y 

Given, median(M) = 3.76 units 

=> Median class= 3-5. =>L=3, h=2, f =8, C = 7.  

The median is given by 

f

h
C

2

N
LM 










 

  

  
8

2
72183763  /y.

    
8

1
43763  y.

 
20820864  .y.y  

=> missing frequency(y) = 2, since frequency is a positive integer.

  

Example 24: The following table gives the information on price of groceries in a supermarket. 

Price of 

groceries 

10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-99 

No. of variety 

of groceries 

7 4 10 28 29 17 10 5 6 

 

Solution: First convert the inclusive classes into exclusive classes before computing median, then 

we have 

Price of 

groceries 

9.5-

19.5 

19.5-

29.5 

29.5-

39.5 

39.5-

49.5 

49.5-

59.5 

59.5-

69.5 

69.5-

79.5 

79.5-

89.5 

89.5-

99.5 

No. of variety 

of groceries(f) 

7 4 10 28 29 17 10 5 6 

Cum. 

Frequency 

7 11 21 49 78 95 105 110 116 

Now, N/2=116/2=58.  

=> 58th term lies in the CF 78, => Median class= 49.5-59.5.  

Here, L=49.5, h=10, C=49, f=29.  

Therefore, the median price is given by 

f

h
C

2

N
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



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
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  603452
29

10
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=> Median(M) price of groceries is ~ Rs.53/-

 
Example 24: Find the median for the following data related to the observed survival times (in 

years) of Indians taken from various states 

survival times  Below 20 Below 40 Below 60 Below 80 Below 100 Below 120 
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(in years) 

No. of persons 25 57 92 168 196 200 

 

Solution: Since the given frequencies (No. of persons) are of less than cumulative type, we 

rewrite the table with exclusive classes before computing median. i.e.,  

survival times (in years) 0-20 20-40 40-60 60-80 80-100 100-120 

No. of persons(f) 25 32 35 76 28 4 

Cumulative frequency 25 57 92 168 196 200 

Now, N/2 = 200/2 = 100.  

=> 100th term lies in the CF 168, => Median class= 60-80.  

Here, L= 60, h = 20, C = 92, f = 76.  

Therefore, the median survival time in years is given by 

f

h
C

2

N
LM 










 

   

  105262
76

20
9210060 .

 
=> Median(M) survival time of Indians is = 62 years.

 
 

Example 24: A survey on was conducted to know the size of television (in inches) set using in 

households of a locality   

Size of television  

(in inches) 

above 

10 

above 

20 

above 

30 

above 

40 

above 

50 

above 

60 

above 

70 

No. of televisions 193 185 168 117 83 47 13 

 

Solution: Since the given frequencies (No. of televisions) are of more than cumulative type, we 

rewrite the table with exclusive classes before computing median. i.e.,  

Size of television  

(in inches) 

10-20 20-30 30-40 40-50 50-60 60-70 70-80 

No. of televisions(f) 8 17 51 34 36 34 13 

Cum. frequency 8 25 76 110 146 180 193 

Now, N/2 = 193/2 = 96.5.  

=> 96.5th term lies in the CF 110, => Median class= 40-50.  

Here, L=40, h=10, C=76, f=34.  

Therefore, the median size of television is given by 

f

h
C

2

N
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








 

   

  694445
34
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=> Median(M) size of TV using in that locality is ≈ 46 inches. 
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2.8  Mode (Z or Mo): Mode is the most frequently occurring or most repeated value in the given 

set of observations. It is usually denoted by either Z or Mo. 

 

2.8.1 Merits and demerits of Mode 

Mode has few merits (advantages) and demerits (disadvantages). They are given in the form of 

table. 

Merits Demerits 

a. It can be calculated even if one 

observation is missing. 

b. It is least affected by extreme values. 

c. It can be calculated for frequency 

distributions with open end class. 

d. It can be calculated for both quantitative 

and qualitative data. 

e. It can be obtained graphically. 

f. Like median it can be located merely by 

inspection. 

g. It is not at all sensitive to extreme values. 

h. It can be calculated even if a frequency 

distribution with unequal class width 

provided modal class, and its preceding 

and succeeding classes have the same 

class width.  

a. Since it is not based on all the 

values, result may not be stable. 

b. It cannot be used for further 

algebraic treatment. 

c. It is difficult to calculate as 

compared to mean 

d. It is very much  affected by 

fluctuations of sampling.             

e. Mode can be ill defined. i.e., it is 

not always possible to find a 

clearly defined mode. If a 

distribution has two modes then it 

is said to be bimodal and if a 

distribution has more than two 

modes then it is said to be 

multimodal. 

 

2.8.2 Computation of Mode  

Case (1): Raw Data  

Mode is the most repeated value in the given set of observations. 

 

Example 25: Find the mode of  6 8 10 12 8 9 8. 

Solution: Here, most repeated value is 8, => Mode(Z) = 8 units. 

 

Example 26: Find the mode of the following 

Marks in Statistics: 60    80    70    65    70    82    83    72    55    72    70    73    72. 

Solution: Here, both 70 and 72 are repeated 3 ( most number of) times each.  

Therefore,  

Mode(Z) = 70 or 72   

=> given distribution is a ‘bimodal’ distribution as it has two modes. 

 

Case 2: For discrete frequency data 

Consider a discrete frequency data ii f|X , i =1,2,...,n ; then mode can be obtained using the  

following steps. 
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i. Find the Maximum(largest/highest) frequency 

ii. The value of the variable X(say), which corresponds to largest frequency is the required 

Mode(Z) of that distribution, provided the largest frequency is not at the extremes. 

  

Note 1. In a frequency distribution, if the neighbouring frequencies are very close(usually a 

difference of 1 or 2) to the highest frequency, then above method fails to give Mode. In this case, 

we use the method of ‘grouping to evaluate Mode’. 

Note 2. If the highest frequency is at the extremes of a frequency distribution, then mode is ill 

defined. In this case, graphical method also will fail to give Mode, and we need to use different 

approach, and it will be discussed later.  

 

Example 27: Find the mode from the following data 

xi:  10 15 20 25 30 35 40 

fi: 3 7 8 12 7 6 4 

Solution: In the given data, Highest frequency(f) =12, => Mode(Z) =25 units. 

 

Case 3. Mode for Grouped frequency data 

Consider the continuous grouped frequency data if|ULLL  , i =1,2,...,n ; then mode can be 

obtained using the following steps. 

i. Find the Maximum(largest/highest) frequency 

ii. The class interval, which corresponds to largest frequency is the required ‘modal class’ of 

that distribution. 

iii. The mode is then given by 

 












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ff2f

hff
LZ

1

1

 

Where, L, denote the lower limit of Modal class 

1f , the highest frequency in a frequency distribution 

0f , frequency of the class, just preceding to modal class. 

2f , frequency of the class just succeeding the modal class  

h,    the width of modal class 

This is the required formula of Mode for continuous grouped frequency distribution 

 

Example 24: Find the mode of the following 

Weight in kgs. 10-20 20-30 30-40 40-50 50-60 60-70 70-80 

No. of Persons 3 5 10 18 9 7 2 

 

Solution: To compute mode, we have 

Weight in kgs. 40-45 45-50 50-55 55-60 60-65 65-70 70-75 Total 

No. of Persons 

fi 

3 5 10 18 9 7 2 54=N 
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Here, highest frequency 1f =18, => Modal class= 55-60.  

Here, L=55, h=5, 1f =18, 0f =10, 2f =9.  

The mode is given by 
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Implies, Modal weight kgs57Z  

 

Example 24: Find the missing frequency if the mode of the distribution is 3.286 units 

Family size 1-3 3-5 5-7 7-9 9-11 

No. of Persons 7 8 ? 2 1 

Solution: Let the missing frequency be ‘y’ and given, Mode(Z) = 3.286 units 

=> Modal class= 3-5.  

Therefore, we have  L=3, h=2, 1f =8, 0f =7, 2f = y(say).  

The mode is given by 
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0129969 ..y   

=> missing frequency(y) = 2, as frequency can not be a decimal number.

  

Example 24: The following table gives the information on the marks obtained in Statistics of 225 

students 

Marks in 

statistics 

10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-99 

No. of Students 3 5 10 28 59 67 32 15 6 

Solution: First convert the inclusive classes into exclusive classes before computing mode. i.e.,  

Marks in 

statistics 

9.5-

19.5 

19.5-

29.5 

29.5-

39.5 

39.5-

49.5 

49.5-

59.5 

59.5-

69.5 

69.5-

79.5 

79.5-

89.5 

89.5-

99.5 

No. of 

Students 

3 5 10 28 59 67 32 15 6 

Here, highest frequency 1f =67, => Modal class= 59.5-69.5.  

Here, L=59.5, h =10 1f = 67, 0f =59, 2f =32.  
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The mode is given by 
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Example 24: Find the mode for the following data related to the observed lifetimes (in hours) of 

electrical components 

lifetimes  

(in hours) 

Below 20 Below 40 Below 60 Below 80 Below 100 Below 120 

No. of 

electrical 

components 

10 45 97 158 196 225 

 

Solution: Since the given frequencies (No. of electrical components) are of less than cumulative 

type, we rewrite the table with exclusive classes before computing mode. i.e.,  

Marks in statistics 0-20 20-40 40-60 60-80 80-100 100-120 

No. of Students 10 35 52 61 38 29 

Here, highest frequency 1f =61, => Modal class= 60-80 

Here, L=60, h =20 1f = 61, 0f =52, 2f =38.  

The mode(Z) is given by  
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On simplification, we have mode(Z) = 65.625hours. 

 

Example 24: The following table gives the information about monthly salary of 200 engineers of 

a software company 

Wages 

in(‘000’) 

above 

10 

above 

20 

above 

30 

above 

40 

above 

50 

above 

60 

above 

70 

above 

80 

above 

90 

No. of 

engineers 

200 185 168 147 133 87 54 26 5 

 

Solution: Since the given frequencies (No. of engineers) are of more than cumulative type, we 

rewrite the table with exclusive classes before computing mode. i.e.,  

Wages in 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100 
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(‘000’Rs) 

No. of engineers 15 17 21 14 46 33 28 21 5 

Here, highest frequency 1f =46, => Modal class= 50-60 

Here, L=50, h =10 1f = 46, 0f =14, 2f =33.  

The mode(Z) is given by  
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On simplification, we have mode(Z) = 57.1111(‘000’ Rs.) = Rs. 57111.1/- 

 

Example 24: Find the mode for the following 

Wages in (‘00’Rs) 10-20 20-23 23-40 40-55 55-60 60-65 65-80 80-90 90 & above 

No. of workers 5 17 23 24 43 31 28 21 5 

Solution: Here, highest frequency 1f =43, => Modal class= 55-60 

Here, L=55, h =5 1f = 46, 0f =24, 2f =31.  

The mode(Z) is given by  

 














20

0

ff2f

hff
LZ

1

1

 

   

 














3124)2(

52443
55

43
 

On simplification, we have mode(Z) = 58.0645(‘00’Rs.)≈Rs.5806/-. 

 

2.9 Partition values 

Partition values are of special type of averages, they divide the entire distribution into some fixed 

number of equal parts. Viz., four or ten, or hundred equal parts. These are also known as 

‘location values’ as they lie at some specific position in the given distribution.  

There are mainly three types of partition values. They are 

i. Quartiles(Qr, r=1,2,3.)  

ii. Deciles(Dr, r=1,2,3,...,9) 

iii. Percentiles(Pr, r=1,2,3,...,99) 

 

2.9.1 Quartiles(Qr,r = 1,2,3): There are three quartiles, divide the entire distribution into four 

equal parts.  Quartiles are usually denoted by Qr, r =1, 2, and 3. When r = 1, i.e., Q1, is called the 

‘lower’ or ‘first’ quartile. Q1 is a value which exceeds 25% and exceeded by 75% of the given set 

observations. In other words, Q1 is a value, which is more than 25% of the given observations 

and less than the remaining 75% of observations given. When r = 2, i.e., Q2, is called the 

‘second’ quartile. Q2 is the value which exceeds 50% and exceeded by 50% of the given set 
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observations, i.e.,, Q2 is the value, which is more than 50% of the given observations and less 

than the remaining 50% of observations given. Q2is also known as ‘median quartile’ as it lies 

exactly at centre part of given distribution. When r =3, i.e., Q3, is called the ‘upper’ or ‘third’ 

quartile. Q3 is a value which exceeds 75% and exceeded by 25% of the given set observations. 

That is, Q3 is a value, which is more than 75% of the given observations and less than the 

remaining 25% of observations given. 

2.9.2. Deciles (Dr, r = 1, 2, 3, . . .,9): There are nine deciles, divide the entire distribution into ten 

equal parts.  Deciles are usually denoted by (Dr, r = 1, 2, 3, . . .,9). When r =1, i.e., D1, is called 

the ‘lower’ or ‘first’ Decile. D1 is a value which exceeds 10% and exceeded by 90% of the given 

set observations. In other words, D1 is a value, which is more than 10% of the given observations 

and less than the remaining 90% of observations given. When r = 2, i.e., D2, is called the ‘second’ 

decile. D2 is the value which exceeds 20% and exceeded by 80% of the given set observations, 

i.e.,, D2 is the value, which is more than 20% of the given observations and less than the 

remaining 80% of observations given. D5 is the 5th decile and also known as ‘median decile’ as it 

lies exactly at centre part of given distribution. D5 is the value which exceeds 50% and exceeded 

by 50% of the given set observations. Similarly, when r = 9, i.e., D9, is called the 9th or ‘upper’ 

decile. D9 is a value which exceeds 90% and exceeded by 10% of the given set observations. That 

is, D9 is a value, which is more than 90% of the given observations and less than the remaining 

10% of observations given. 

 

2.9.3. Percentiles (Pr, r =1, 2, 3, . . .,99): There are ninety-nine deciles, divide the entire 

distribution into hundred equal parts.  Percentiles are usually denoted by Pr, r =1, 2, 3,..., 99. 

When r =1, i.e., P1, is called the ‘lower’ or ‘first’ percentile. P1 is a value which exceeds 1% and 

exceeded by 99% of the given set observations. In other words, P1 is a value, which is more than 

1% of the given observations and less than the remaining 99% of observations given. When r = 2, 

i.e., P2, is called the ‘second’ percentile. P2, is the value which exceeds 2% and exceeded by 98% 

of the given set observations, i.e.,, P2, is the value, which is more than 2% of the given 

observations and less than the remaining 98% of observations given and so on. When r = 50, i.e., 

P50,is called the 50th percentile and also known as ‘median percentile’ as it lies exactly at centre 

part of given distribution. P50, is the value which exceeds 50% and exceeded by 50% of the given 

set observations. Similarly, when r  = 99, i.e., P99, is called the 99th  percentile. P99 is a value 

which exceeds 99% and exceeded by 1% of the given set observations. That is, P99 is a value, 

which is more than 99% of the given observations and less than the remaining 1% of 

observations given. 

 

2.9.4 Computation of Partition values 

Computation of partition values is similar to that of median. Thus we have,  

Case (1): Raw Data  

As a first step, arrange the data (i.e., array) either in ascending and descending order of 

magnitude. Then, use the formula,  
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
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 
 term in the array for Deciles, r = 1, 2, 3, . . .,99. 

where n, the number of observations in the data. 

Example 22: Find quartiles, D2, and P98, from the following. 

Weight of infant in kgs. 4.0, 2.2, 3.5, 2.6, 5.8, 4.5, 5.2, 6.5, 3.6, 4.8 

 

Solution: Array: Weight of infant in kgs. 2.2, 2.6, 3.5, 3.6, 4.0, 4.5, 4.8, 5.2, 5.8, 6.5  

To find quartiles, we have 
th
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 term in the array for Quartiles, r=1, 2, 3. 

Now, when r=1, i.e.,  
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        = 2nd term +0.75(3rd term -2nd term) in array 

       =>  Q1  = 2.6 +0.75(3.5 -2.6) =2.6+0.75(0.9)=2.6+0.675=3.275 kgs 

 

Now, when r=2, i.e.,  
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        = 5th term +0.5(6th term -5th term) in array 

                   =>  Q2 = 4.0 +0.5(4.5 - 4.0) = 4.0 + 0.5(0.5) = 4.0 + 0.25=4.25 kgs 

Or, from second step 

Q2  = [5th term + 6th term]/2, in array 

     =>  Q2  = (4.0+4.5)/2 =8.5/2=4.25 kgs 

 

Now, when r=3, i.e.,  
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        = 8th term +0.25(9th term -8th term) in array 

                  =>  Q3  = 5.2 +0.25(5.8 – 5.2) = 5.2 + 0.25(0.6) = 5.2 + 0.15 =5.35 kgs 

 

To find deciles, we have 
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th

r
10

1n
rD 







 
 term in the array for Deciles, r = 1, 2, . . ., 9. 

Now, when r=2, i.e.,  

    term.//term
th

22102210112
10

101
2D

th

2 






 


 

        = 2nd term +0.2(3rd term -2nd term) in array 

       =>  D2  = 2.6 +0.2(3.5 -2.6) =2.6+0.2(0.9)=2.6+0.18=2.78 kgs 

To find percentiles, we have 
th

r
100

1n
rP 







 
 term in the array for Deciles, r= 1, 2, 3, . . .,99. 

Now, when r=98, i.e.,  

    term.//term
th

781010010781001198
100

101
98P

th

98 






 


 

        ≈ 10th term in array 

       =>  P98  = 6.5 kgs 

 

Case 2: Partition values for discrete frequency data 

Quartiles, Deciles and Percentiles for discrete frequency data ii f|X , i =1,2,...,n ; can be obtained 

by the following steps.   

Step 1. Find the cumulative frequencies(CFs) for the discrete frequency data. 

Step 2. Find   

th

r
4

1N
rQ 







 
 term lies in the CF, for Quartiles, r=1, 2, 3. 

th

r
10

1N
rD 







 
 term lies in the CF, for Deciles, r= 1, 2, . . .,9. 

th

r
100

1N
rP 







 
 term lies in the CF, for Deciles, r= 1, 2, 3, . . .,99. 

where .fN
n

i

i



1

 

Step 3. Find a CF ≥ 






 


4

1N
r for quartiles, CF ≥ 







 


10

1N
r for deciles, and CF ≥ 








 


100

1N
r for percentiles. 

 

Step 4. The Qr or Dr or Pr is a value of the variable X(say), which corresponds to CF, obtained in 

3rd step.  

 

Example 23: Find, Q3, D1, and P68 of the following 
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xi:  7 10 15 18 20 22 

fi: 5 7 10 12 8 4 

Solution: Given discrete frequency data  

xi:  7 10 15 18 20 22 

fi: 5 7 10 12 8 4 

CFs: 5 12 22 34 42 46 

Here, 46
1




n

i

ifN .  

To find quartiles 
th

r
4

1N
rQ 







 
 term lies in the CF 

Now when r=3, we have 

   th./ 25354473
4

164
3Q

th

3 






 
 term lies in the CF =42,  ( i.e., as CF = 42 > 35.25).  

=>  corresponding to CF=42, we have,  xi = 20, 

=> Q3= 20 units. 

 

Now to find deciles, we have 
th

r
10

1N
rD 







 
 term lies in the CF, for Deciles, r= 1, 2, . . .,9. 

Now, when r=1, we have 

   th./ 741047
10

164
1D

th

1 






 
 term lies in the CF = 5, ( i.e., as CF = 5 > 4.7).  

=>  corresponding to CF=5, we have, xi = 7,  

=> D1= 7 units. 

Now when r=68, we have 

   th.// 4451005441004768
100

164
86P

th

68 






 
 term lies between 5th and 6th terms. 

=>  P68 = 5th term +0.44(6th  term -5th term) 

  P68 =7+0.44(10-7),   (because, 5th term lies in the CF=5, and 6th term lies in the CF=12) 

=>           P68 =7+0.44(3)=7+1.32=8.32 units;   

 

Case 3. Quartiles, Deciles and Percentiles for grouped frequency data 

Consider the grouped frequency data iji f|XX  , i =1,2,...,n ; then partition values can be 

obtained by the following steps.   

Step 1. Find the cumulative frequencies(CFs) for the discrete frequency data. 

Step 2. Find   

th

r
4

rN
Q 








 term in the CF, for Quartiles, r=1, 2, 3. 
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th

r
10

rN
D 








 term in the CF, for Deciles, r= 1, 2, . . .,9. 

th

r
100

rN
P 








 term in the CF, for Deciles, r= 1, 2, 3, . . .,99. 

where .fN
n

i

i



1

 

Step 3. Find a CF ≥ 








4

rN
for quartiles, CF ≥ 









10

rN
for deciles, and CF ≥ 









100

rN
for percentiles. 

Step 4. Find a class interval, which corresponds to CF, obtained in 3rd step, gives the required 

Quartile, or Decile or Percentile class. 

Step 5. Once getting the class for a partition value, use the following formula to compute the 

required partition value. i.e., 

f

h
C

rN
LQr 










4
,   for quartiles, r=1, 2, 3. 

f

h
C

rN
LDr 










10
,   for deciles, r=1, 2, . . .,9. 

f

h
C

rN
LPr 










100
,   for percentiles, r=1, 2, . . ., 99. 

Where, L, denote the lower limit of quartile/decile/percentile class 

C, the cumulative frequency of class, just preceding(previous) to partition value class 

h, the width of partition value class, and f, frequency of the partition value class. 

 

Example 24: Find Q1, Q3, D3, and P99 of the following 

Weight in kgs. 10-20 20-30 30-40 40-50 50-60 60-70 70-80 

No. of Persons 3 5 10 18 9 7 2 

 

Solution: To compute median, we have 

Weight in kgs. 10-20 20-30 30-40 40-50 50-60 60-70 70-80 Total 

No. of Persons fi 3 5 10 18 9 7 2 54=N 

Cumulative 

Frequency(CFs) 

3 8 18 36 45 52 54  

 

To find respective quartile class, we have 
th

r
4

rN
Q 








 term lies in the CF, for Quartiles, r=1, 2, 3. 

Now when r=1, 

  term513
4

541
Q

th

th

1 .






 
 lies in the CF =18 

=> Q1 class= 30-40.  
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Here, L=30, h=10, C=8,  r=1, f=10.  

Therefore, Q1 weight is given by 

f

h
C

N
LQ 










4
1

 

   

 
10

10
851330  .

  
=> Q1 = 30+5.5 = 35.5 kgs

 
Now when r=3, 

  term540
4

543
Q

th

th

3 .






 
 lies in the CF= 45 

=> Q3 class= 50-60.  

Here, L=50, h=10, C=36,  r=3, f=9.  

Therefore, Q3 weight is given by 

f

h
C

N
LQ 










4

3
3

 

   

 
9

10
3654050  .

  
=> Q3 = 50 + 5 = 55 kgs 

Now when r = 3, 

  term216
10

543
D

th

th

3 .






 
 lies in the CF =18 

=> D3 class= 30-40.  

Here, L=30, h=10, C=8,  r=3, f=10.  

Therefore, D3 weight is given by 

f

h
C

N
LD 










10

3
3

 

   

 
10

10
821630  .

  
2362630 .. 

                               => D3 = 36.2 kgs 

Now when r = 99, 

  term4653
100

5499
P

th

th

99 .






 
  lies in the CF =54 

=> P99 class= 70-80.  

Here, L=10, h=10, C=52,  r = 99,  f=2.  

Therefore, P99 weight is given by 

f

h
C

N
LP 










100

99
99
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 
2

10
52465370  .

  
=>P99 = 77.3 kgs 

 

Objective questions 

1. The average which is affected by extreme values is 

a. Median b.Mode   c. Mean d.None 

2. The average which lies exactly at the centre part of the given distribution is 

a. Median b.Mode   c. Mean d.all 

3. The average which is highly useful for businessmen is 

a. Median b.Mode   c. Mean d.None of the above 

4.The average which is calculated for qualitative data also is 

a. Median b.Mode   c. Mean d. both a and b. 

5. The average which is calculated for quantitative data only is 

a. Median b.Mode   c. Mean d. None 

 

Exercise 

1. Define central tendency. Write the chief characteristics of a good measure of central tendency. 

2. Write the various measures of central tendency. Explain any one of them. 

3. Write the properties of mean. Prove any one of them. 

4. Deduce the effect of change of origin and change of scale on arithmetic mean. 

5. Derive the expression for combined arithmetic mean of two sets of data. 

Or  show that, cx
21

2211

nn

xnxn




  

6. Find simple arithmetic mean and weighted arithmetic mean of first n natural numbers, where 

weights being the corresponding numbers. 

7. Write a note on partition values. Or, what are partition values? 

8. Find the mean, median and mode from the following data 

Heart beats/min: 72 78 80 75 79 70 71 77 75 74 

9. Find the mean, median and mode for the following data 

Student of 10th standard: A B C D E F G  

Height in cms:   162 168 160 175 169 170 171 

10. Find the mean, median and mode for the following data 

Height in cms:  160 162 168 169 170 171 175 

No. of Students: 5 8 15 20 9 6 2 

11. The marks obtained by 30 students of a class in mathematics are given below. Find the mean 

marks of that class.  

Marks obtained 10-25 25-40 40-55 55-70 70-85 85-100 

No. of students 2 3 10 6 2 3 

 Also, compute median and mode. 
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12. Find missing frequency of the data given below which shows the mean daily pocket 

allowance of college students of a town isRs.180/- 

Daily pocket 

allowance (Rs) 

110-130 130-150 150-170 170-190 190-210 210-230 230-250 

No. of students 7 6 9 13 - 5 4 

13. Find missing frequencies of the distribution given below which shows the mean daily wages 

of 50 labours is Rs.545.2/-. 

 Daily wages (Rs) 500-520 520-540 540-560 560-580 580-600 

No. of labours 12 ? ? 6 10 

14. A survey was conducted by a group of students as a part of their environment awareness 

programme. During the survey, they have collected the following data regarding height of rose 

plants in a rose garden. Find suitable average height of rose plants.  

Height of rose 

plants(feets) 

0-0.5 0.5-1.0 1.0-1.5 1.5-2.0 2.0-2.5 2.5-3.0 3.0-3.5 

Number of plants 1 2 4 5 6 2 3 

15. A physician examined and recorded the heartbeats(per minute) of 30 pregnant women in his 

hospital. Find the average heartbeats/minute per women.  

Heartbeats/minute 65-69 70-74 75-79 80-84 85-89 90-94 

No. of pregnant 

women 

2 5 11 8 3 1 

Also, compute median and mode. 

16. Find the mean for the following data  

Daily wage(Rs.)  below

150 

below 

200 

below 

250 

below 

300 

below 

350 

below 

400 

below 

450 

N0. of workers 5 16 27 65 80 93 100 

Also, compute median and mode. 

17. Find the mean weight of 100 children in pounds(lbs) from the following data. 

Weight(lbs) >10 >15 >20 >25 >30 > 35 >40 

No. of children 100 86 67 40 28 15 4 

Also, compute median and mode. 

18.  A school conducts a mid-term examination for X-standard students, in which 45 boys scored 

an average marks of 64.5 and that of 32 girls is 68.2. Find the mean marks of all the students 

taken together. 

19.  The mean height (in cms.) of 80 students of a class is 168.5cms. The mean height of 30 girls 

is 162.2cms.  Find the mean height of boys.  

20.  The mean of height of 20 boys is 66.5inches. While calculating the average height, a person 

recorded one value as 63 inches, instead of 68inches. Find the actual mean height. 

21.  The mean of marks of 25 boys is 66.5%. While calculating, a person recorded wrongly the 

values as 63 % and 68%, instead 65% and 73% respectively. Find the correct mean. 
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22.  A person travels from Mysore to Bangalore by Bus. The speed of first 50kms it runs at a 

speed of 45kms/hr., and the next 50 kms at a speed of 55kms/hr. The remaining 40kms the bus 

runs at a speed of 30kms/hr. Find the average speed of the Bus. 

23. A person travels from Mysore to Chennai. First, he travels 50 kms by car at a speed of 65 

kms/hr., next 20 kms by bike at a speed of 50kms/hr., and the remaining 250 kms by train at a 

speed of 45 kms/hr. Find the average speed of the total journey. 

24. Out of 80 students who took an examination, 35 passed in the second class (50 to 59%) and 

18 passed in the 1st class. (60% and above). Find the median of the marks. 

25. A train runs 25 miles at a spend of 30 m. p.h. another 50 miles at a speed of 40m.p.h. then due 

to repairs of the track, travels for 6 minutes at a speed of 10 mph and finally covers the remaining 

distance of 24 miles at a speed of 24mph. What is the average speed in mph? Also, verify your 

answer with actual formula for speed. 

26. The numbers 3.2, 5.8, 7.9, and 9.5 has frequencies x, x +2, x-3 and x + 6 respectively. If the 

A.M. is 4.876, find the value of x. 
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UNIT 3 

MEASURES OF DISPERSION 

 

3.1 Objective 

The main objective of dispersion or variation is to determine the reliability or consistency of the 

given data set and also, to find out the variability within the sample. In this unit we study various 

measures of dispersion, and their merits, demerits and their applications.  

 

3.2 Introduction 

In the previous chapter ‘measures of central tendency’, we have discussed about various types of 

averages. These averages indicate i) the concentration of observations at the centre part of the 

given distribution, and ii) variations between two or more samples, i.e, they do not indicate 

variations within the sample clearly. Therefore averages are not just enough to justify the stability 

or uniformity or consistency of the given distribution. Thus it is necessary to study different 

methods to have an idea about variations within the sample. This could be achieved through 

‘measures of dispersion’. For eg., consider three leading cricketers say A, B and C and their 

scores in first five one-day international matches are as follows. 

 

Cricketer I II III IV V Average( x ) 

A 30 45 50 55 90 54 

B 20 55 98 25 72 54 

C 06 47 14 63 140 54 

 

From the above table, it is observed that the average (arithmetic mean) scores of all the three 

cricketers remain same. But by looking at the data carefully, the scores of ‘B’ and ‘C’, varied(i.e., 

ups and downs) lot as compared to the scores of ‘A’, who has shown considerable improvement 

in his performance from match to match. Thus, averages alone will not give complete idea about 

‘stability’ or ‘consistency’ of the data, and they do not take into consideration of ‘dispersion’ or 

‘spreadness’ or ‘variations’ within the given set of observations. Therefore, one should not take 

decision blindly or simply using averages, instead have a look at the given distribution of values, 

and this will lead to measures of variability at great extent before drawing some conclusion about 

the distribution of values. 

Thus, ‘measures of dispersion’ is defined as a statistical measure, deals with the study of 

‘spreadness’, i.e., how far the given set of observations away from a central value, such as mean, 

median, mode etc.  

 

3.3 Types of Dispersion Measures  

There are mainly two types of measure of dispersion. They are  

a. Absolute measures 

b. Relative measures 
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Absolute measures Relative measures 

a. Range(R)  

b. Quartile deviation(QD) 

c. Mean deviation(MD) 

d. Standard deviation(SD) 

a. Coefficient of Range  

b. Coefficient of Quartile deviation 

c. Coefficient of Mean deviation 

d. Coefficient of Variation(CV) 

 

3.3.1 Difference between Absolute and Relative measures of Dispersion 

Absolute measures Relative measures 

1. Based on units of measurements 

2. Based on actual values 

3. These are not expressed in terms of 

rates, ratios and percentages 

4. Not good for comparative study 

1. Not Based on units of 

measurements 

2. Not Based on actual values 

3. These are expressed in terms of 

rates, ratios and percentages 

4. Good for comparative study 

 

3.3.2 Characteristics of a good or an ideal measure of central tendency 

1. It should be rigidly defined. 

2. It should be based on all the observations. 

3. It should be easy to understand. 

4. It should be used for further mathematical or statistical analysis. 

5. It should be least affected by sampling fluctuations. 

6. It should be least affected by extreme or abnormal values. 

 

3.3a. Range(R): Range is the difference between largest value and the smallest value of the 

given set of observations. It is denoted as ‘R’. Symbolically, range(R) is then given by 

     R = H - L 

Where H, is the largest or highest value and L, is the smallest or lowest value. 

 

The relative measure of range is coefficient of range and is given by  

 LH

LH
RangeoftCoefficien




 . 

Application of range 

a. It is useful in measuring quality of products. i.e., in statistical quality control of items. 

b. In finance, say difference between the low and high prices of a commodity over a period 

of time. For eg., shares, gold prices 

c. In equity reports 

d. Risk analysis in investments 

 

3.3b. Quartile Deviation (QD): It is half times the difference between upper quartile(Q3) and 

the lower quartile(Q1). Symbolically, it is given by 
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   2

13 QQ
DeviationQuartile


  

The relative measure of quartile deviation is coefficient of quartile deviation and is given by  

  13

131313

22 QQ

QQQQQQ
DeviationQuartileoftCoefficien







 . 

 

3.3c. Mean Deviation(MD): It is the mean of absolute deviations of set of values taken from a 

central value, like mean, median etc. Symbolically, if nxxx ,...,, 21 are the set of n observations and 

A be any constant, then the mean deviation about A, is given by 

   
 

n

Ax

ADeviationMean

n

i

i




 1  

where A = mean( x ) or median(M), or mode(Z), etc. 

 

 If nxxx ,...,, 21 are the set of n observations with respective frequencies nfff ,...,, 21 , and A be any 

constant, then the mean deviation about A, for a frequency data is given by 

   
 

N

Axf

ADeviationMean

n

i

ii




 1  

where, 



n

i

ifN
1

.  

If deviation is taken from mean, then it is known as mean deviation from mean, usually denoted 

by MD( x ) and if the deviation is taken from median, then it is known as mean deviation about 

median, usually denoted by MD(M), etc. 

 

The relative measure of mean deviation is called the coefficient of mean deviation and thus 

coefficient of mean deviation about A is given by  

  
 

 
A

AMD
ADeviationMeantCoefficien  . 

 

Thus, coefficient of mean deviation about mean is given by 

  
 

 
x

xMD
xDeviationMeantCoefficien  . 

Coefficient of mean deviation about median is given by 

  
 

 
M

MMD
MDeviationMeantCoefficien  ,  

and etc. 

 

3.3d. Standard Deviation(SD): It is the positive square root of mean of algebraic sum of 

squared deviations of set of values taken from their mean. It ‘is’ denoted by Greek letter 
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‘σ’(sigma). Thusif nxxx ,...,, 21 are the set of n observations with mean( x ), then the standard 

deviation is given by 

 

   
 

 

n

xx

DeviationdardtanS

n

i

i




 1

2

 ,for raw data 

 

If nxxx ,...,, 21 are the set of n observations with respective frequencies nfff ,...,, 21 , with 

mean( 



n

i

ii N/xfx
1

),  the standard deviation for a frequency data is then given by 

 
 

N

xxf

DeviationdardtanS

n

i

ii




 1

2

 . 

Where, 



n

i

ifN
1

. 

Note: Variance is the square of standard deviation(SD). That is, (SD)2 = σ2 =Variance. 

Note: For practical point of view above formulae can be written as 

     21

2

2

11

2

x
n

x

n

x

n

x
n

i

i

n

i

i

n

i

i























 ,for raw data,  

where 



n

i

i n/xx
1

 

And, for frequency data fi|Xi, i =1,2,...,n  we write 

    

 21

2

2

11

2

x
N

xf

N

xf

N

xf
n

i

ii

n

i

ii

n

i

ii























 ,  

where, 

 




n

i

ii N/xfx
1

 and 



n

i

ifN
1

. 

 

Merits and demerits of Standard Deviation(SD) 

Standard Deviation has few merits (advantages) and demerits (disadvantages). They are given in 

the form of table. 

Merits Demerits 

1. It is rigidly defined.  

2. It is based on all the 

observations. 

3. It can be used for further 

1. It cannot be calculated even if one 

observation is missing. 

2. It cannot be calculated for frequency 

distributions with ‘open end class’ at the 
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algebraic treatment. 

4. It is least affected by sampling 

fluctuations. 

5. It is least affected by extreme 

values. 

tails, for eg., less than 20, more than 80, etc. 

3. It cannot be used to analyse qualitative 

characteristics such as honesty, beauty, etc. 

4. It cannot be calculated graphically. 

5. It is difficult to calculate as compared to 

range 

 

Note: Since standard deviation satisfies most of the requisites of a good measure of dispersion, 

and hence it is to be called as an ‘Ideal’ measure of dispersion’. 

 

Applications of standard deviation 

It is one of the widely used measures of variation. Namely, 

a. It is used in statistical quality control of products. 

b. It is used find the consistency of two or more sets of data. 

c. In finance standard deviation is used as a measure of volatility. For eg. Price data. 

d.  In pooling it is the key factor of calculating margins of error. 

 

Variance: The square of a standard deviation( ) is called the variance.  That is, Variance = 2 . 

Thus, 

 

N

xxf

Variance

n

i

ii




 1

2

2  

Coefficient of Standard deviation: Coefficient of standard deviation is defined as the ratio of 

standard deviation to the arithmetic mean of the given data. Symbolically, 

Coefficient of standard deviation
xmean

deviationdardtans 


 

This is practically more seldom used and thus we define coefficient of variation based on 

standard deviation. 

Coefficient of Variation(C.V.): It is hundred times the coefficient of standard deviation. 

Symbolically,   

100
x

.V.C


 
Remark. Coefficient of variation is highly useful for comparative study of two or more data sets. 

If a data set having lesser C.V. is called more consistent or more reliable or more uniform. That 

is, if C.V.(A)<C.V(B), then data set A is more consistent than the data set B, i.e., observations in 

data set A is more closer than in set B.  

 

3.4 Properties of standard deviation 

Property 1. Standard deviation is independent of change of origin but not independent of change 

of scale. That is, if   hAxu ii  , where A, the origin and h, the scale are two positive constants, 

then  
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 

n

uu

hh

n

i

i

ux






 1

2

 . 

Proof: Let nxxx ,...,, 21 are the set of n observations with mean( x ), then the standard deviation is 

given by 

     

 

n

xx
n

i

i




 1

2

 .      (1) 

Let iu be a new variable such that   hAxu ii  , where A, the origin and h, the scale are two 

positive constants. Then,  

ii huAx 
       

(2)

 Summing over i =1,2,...,n on both sides and dividing by n, we get 

  n/uhn/An/x
n

i

i

n

i

n

i

i 



111

1

 
uhn/nAx 

 uhAx        (3) 

Therefore from equations (2) and (3), is given by 

      uuhxx ii        (4) 

Squaring both sides of(4) and on taking sum over i = 1, 2, ...,n, we get 

       



n

i

i

n

i

i uuhxx
1

2

1

2
     (5) 

Dividing equation (5) throughout by ‘n’, we get 

    

   

n

uu

h
n

xx
n

i

i

n

i

i 







1

2

21

2

 

     222

ux h    

Taking square root both sides, we get 

    

 

n

uu

hh

n

i

i

ux






 1

2

 .     (6) 

Which is independent of ‘A’, the origin but not independent of change of scale(h). Hence 

Standard deviation is independent of change of origin but not independent of change of scale. 

 

Remark: Above result can be extended to frequency data in similar lines. This could be achieved 

through multiplying equation(2) by fi, throughout and later dividing by 



n

i

ifN
1

, wherever 

necessary. 
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Property 2. Standard deviation is not less than mean deviation from mean 

Proof: Here we have to show,    not less than  xMD , implies, 

      ≥  xMD  

That is,  

     2 ≥   2xMD       (1) 

Let xxZ ii  , then  

    
N

Zf

xMD

n

i

ii
 1  and  

N

Zf

SD

n

i

ii
 1

2

                             (2) 

   

Therefore equation (1) gives,  

    

2

11

2























N

Zf

N

Zf
n

i

ii

n

i

ii

0

2

11

2

























N

Zf

N

Zf
n

i

ii

n

i

ii

 

    021

2



 Z

N

Zf
n

i

ii
 

01

2









N

ZZf
n

i

ii

,    (3) 

which is true always. i.e., Var(Z) ≥ 0, always  => SD(σ) ≥ 0, since standard deviation is always 

nonnegative, and thus,  

      ≥  xMD  

i.e., standard deviation is not less than mean deviation from mean. 

 

Property 3. Standard Deviation of Combined Series(Combined SD) 

Let there be k sets of random samples of sizes ni (i =1,2,...,k), each with respective means ix ,and 

standard deviations i ,Then the combined standard deviation of k-sets of data is given by 

Combined SD( c ) = 
     

k

kkk

n...nn

dn...dndn





21

222

2

2

22

2

1

2

11 
,  

where cii xxd  , for all i =1,2,...,k , and 
k

kk
c

n...nn

xn...xnxn
x






21

2211 . 

Proof: Let )(
111211 nx,...,x,x , )(

222221 nx,...,x,x , )(
333231 nx,...,x,x , . . . , )( 21 kknkk x,...,x,x be the k-sets of 

random samples with respective sample sizes ni, and sample means ix , i =1,2,...,k.  

Then the combined mean of k-sets of data is given by  

cx
k

kk

n...nn

xn...xnxn






21

2211  .      (1) 

We know that, 
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 
 





 




n

i

i

n

i

i

xxn
n

xx

1

2

11

2

11

1

1

2

11
2

1

1

  

Similarly, we have  



2

1

2

22

2

22

n

j

j xxn  , . . . ,  



kn

k

kkkkk xxn
1

22
    (2) 

The combined standard deviation for k sets of data is given by 

 

     

k

n

i

n

k

kkk

n

j

jci

c
n...nn

xx...xxxx
k







 
 

21

1 1

2

1

2

22

2

1

1 2

      (3) 

Let    cii xxd   ,   fori =1,2,...,k                  (4)  

        

Now, we write,  

       211

1

2

11

1

2

111

1

2

1

111

c

n

i

i

n

i

ci

n

i

ci xxnxxxxxxxx  


, (by eqn. 4)  (5) 

Where the cross product term vanish because,  



1

1

11 0
n

i

i xx . Thus we have 

   2

1

2

11

2

11

2

11

1

2

1

1

dndnnxx
n

i

ci 


       (6) 

       2

2

2

22

2

22

1

2

22

1

2

1

22

dnxxnxxxx c

n

j

i

n

j

ci  


 ,....,    22

1

2

kkk

n

k

ckk dnxx
k




 ,  (7) 

Using equations (6) and (7), eqn.(3) reduces to 

 

     
k

kkk
c

n...nn

dn...dndn






21

222

2

2

22

2

1

2

11 
  ,               (8) 

which is the required formula for combined standard deviation.  

 

Note. In particular, if k = 2, i.e., for two sets of data, combined standard deviation of (n1+n2) 

observations is given by   

   
21

2

2

2

22

2

1

2

11

nn

dndn
c







  

Proof is just like above result. 

Example: Find the mean, standard deviation and variance of first n natural numbers 

 

Solution: Given the first n natural numbers, x: 1, 2, . . ., n. Then the mean is given by 

   n/xx
n

i

i



1

 



 

 

 

 

52 

 
  

  units.21
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321

,/n

n//nn

n/n...







    

Consider, 
2

ix  21  22  23  . . . 2n  

then,      
6

121
21 222

1

2 




nn
n...,x

n

i

i

 

Variance = Var(x) =  2

1

2 xn/x
n

i

i 

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2

1

6
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



 



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


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 

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





 
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3
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1 nnn
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1

6

1
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1 2 
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





 







 


nnn
. 

Therefore, Standard deviation(SD) =   .
n

xvar
12

12 
  

Example 2: Find the mean and standard deviation of ,
c

bax 
where a, b, and c are constants 

when the random variable X has the mean ‘m’ and sd ‘σ’. 

 

Solution: Givenmean and sd of X is ‘m’ and ‘σ’, respectively. Now to find mean and sd of 

c

bax
y


 , we have 

Mean(y) n/y
n

i





1











 
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i nc
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c

bam

c
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nbxa
ii 



















 

=>Mean(y) 
c

bam 
  

 

Example: Find the mean deviation from mean and standard deviation of AP, a, a+d, a+2d, ..., 

a+2nd, and verify that SD is greater than MD(mean).  

 

Solution: We know that mean of a series in AP is the mean of its first and last terms. Hence the 

mean of the given series is
 

nda
ndaa

x 



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X xx    2xx   

a nd n2d2 

a+d (n-1)d (n-1)2d2 

a+2d (n-2)d (n-2)2d2 

. . . 

. . . 

. . . 

a+(n-2)d 2d 22d2 

a+(n-1)d d d2 

a+nd 0 0 

a+(n+1)d d d2 

a+(n+2)d 2d 22d2 

. . . 

. . . 

. . . 

a+(2n-2)d (n-2)d (n-2)2d2 

a+(2n-1)d (n-1)d (n-1)2d2 

a+2nd Nd n2d2 

Mean deviation(Mean) = MD( x ) =
12
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
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=> Sd(σ) =
 

3

1


nn
diancevar . 

To verify, SD > MD(Mean), we suppose, 

    22
xMDSD   

Then we have, 

=>
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=>    1312
2

 nnn  

=> 012  nn , which is true always, since n is a positive integer.  

Thus, SD > MD(mean). 

 

3.5  Standard deviation and Root mean square deviation 

Root mean square deviation is usually denoted by ‘s’ and is defined as 

 

N

Axf

s

n

i

ii




 1

2

. 

Where A, is any arbitrary constant, and s2, is called the mean square deviation.  

By definition, we have, 
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iiii xxfAxAxNxxf
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   
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
n
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ii Axxxf
N 1

221
,   












meanarithmeticofpropertyby0
1

,xxf
n

i

ii  

 22 Ax   

22  s , always. 

 

Remark: Note that, 22 s , only if xA . That is, mean square deviation is least when the 

deviations are taken from xA , the mean. Hence variance is the least value of mean square 

deviation and consequently, standard deviation is the minimum/least value of root mean square 

deviation. 

 

Example: Find the range, quartile deviation , mean deviation from mean, standard deviation and 

their relative measures from the following data. 

Weight of students in kgs. 40, 22, 35, 26, 58, 45, 52, 65, 36, 48 

 

Solution: Array: Weight( ix ) of students in kgs. 22, 26, 35, 36, 40, 45, 48, 52, 58, 65  

Range(R) = H – L,  

where H, the highest value & L, the lowest value. Thus, 

      R=65 - 22=4,  

coefficient of range =( H – L)/ (H + L) =43/87=0.4943 

To find quartile deviation, we have 
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    term./term
th

752411
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1 






 


 

        = 2nd term +0.75(3rd term - 2nd term) in array 

       =>  Q1  = 26 +0.75(35 - 26) =32.75 kgs 

And,     term.//term
th

2584334113
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101
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th
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



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 
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        = 8th term +0.25(9th term -8th term) in array 

                  =>  Q3  = 52 +0.25(58 – 52) = 52 + 0.25(6) = 53.5 kgs 

 

37510
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Coefficient of QD= 24050
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To find mean deviation from mean, and its coefficient, we have 





n

i

i n/xx
1

(22+26+...+65)/10 = 427/10 = 42.7 

ix  :     22,    26,   35, 36,  40, 45, 48,  52,  58,   65 

| ix - x |: 20.7, 16.7, 7.7, 6.7, 2.7, 2.3, 5.3, 9.3, 15.3, 22.3 

Thus,   kgs.
n

xx

xMD
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and Coefficient of MD about mean
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x
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To find standard deviation & coefficient of variation(C.V.) we have 

2

ix : 484    676,  1225, 1296, 1600, 2025, 2304, 2704, 3364,  4225  =>


n

i

ix
1

2
= 19903 

standard deviation     kgs..x
n

x
n

i

i

9212742
10

19903 221

2



  

Coefficient of variation(C.V.) = 100  / x = 100(12.92)/42.7 = 30.2576. 

 

Example 2. Find standard deviation and coefficient of variation 

ix  : 10     22 26    35  36   40 

if  : 3 12 20 7 8 5 

Solution: We know that, mean( x ) = 


n

i

ii N/xf
1

, where 
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ifN
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ifN
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=55, so that  
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mean( x ) = 


n

i

ii N/xf
1

=1547/55 = 28.1273 

and,  standard deviation     45667127328
55

46571 221

2

..x
N

xf
n

i

ii



  

Coefficient of variation(C.V.) = 100  / x = 100(7.4566)/28.1273 = 26.51. 

 

Example 3. The scores of two golfers for 5 rounds were as follows: 

Golfer A: 33 38 35 40 34 

Golfer B: 22 30 40 28 35 

Find which golfer may be considered to be more  i) better,   ii) consistent player? 

Soltion: we have 

Golfer A scores (x) 33 38 35 40 34  180x  

Golfer A scores (y) 22 30 40 28 35  155y  

x2 1089 1444 1225 1600 1156   65142x  

y2 484 900 1600 784 1225   49932y  

i. Mean score of golfer A = x  = 


n

i

n/X
1

180/5 = 36 

Mean score of golfer A = y  = 


n

i

n/Y
1

155/5 = 31 

Since x > y => Golfer A is the better player. 

ii.      For golfer A:       61236
5

6514 221

2

.x
n

x
n

i

i

A 

  

Coefficient of variation(C.V.(A)) = 100 
A / x = 100(2.61)/36 = 7.25% 

For golfer B:       13631
5

4993 221

2

.y
n

y
n

i

i

B 

  

C.V.(B) = 100 
B / y = 100(6.13)/31 = 19.77% 

=> CV(A)<CV(B), i.e., 7.25<19.77 => golfer A is more consistent player. 

 

 

Objective questions 

1. Absolute measure of dispersion is 

a.mean  b.range  c. coefficient of variation d. None 

2. Relative measures of dispersion has 

a.units  b. no units c. either a or b  d. None 

3. Standard deviation is----- than root mean square deviation 

a.less  b.more  c.equal  d.all the above 

4. Mean deviation is least when it is measured from 
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a.mode  b. mean c.range  d.median 

5. The ideal measure of dispersion is 

a.range  b.mean deviation d. Standard deviation  d. All the above 

 

Questions 

1.  Define dispersion. Write the chief characteristics of a good measure of dispersion.  

2.  Write the various measures of dispersion. Explain any one of them. 

3.  Differentiate between absolute and relative measures of dispersion. 

4.  Which is the ideal measure of dispersion? Write its characteristics. 

5.  Write the properties of standard deviation. 

6. Deduce the effect of change of origin and change of scale on standard deviation. 

7. Derive the expression for standard deviation of two sets of data. 

8. Find simple standard deviation and weighted standard deviation of first n natural 

    numbers, where weights being the corresponding numbers. 

9. Find standard deviation and standard deviation of first n natural numbers, where weights 

    being the corresponding opposite numbers. 

10. Find the range, quartile deviation, mean deviation from mean, standard deviation from the 

following data 

Heart beats/min: 72 78 80 75 79 70 71 77 75 74 

11. Find the range, quartile deviation, mean deviation from mean, standard deviation from the 

following data 

Student of 10th standard:  A  B  C  D  E  F  G  

Height in cms:   162 168 160 175 169 170 171 

12. Find the range, quartile deviation, mean deviation from mean, standard deviation from the 

following data 

Height in cms:  160 162 168 169 170 171 175 

No. of Students: 5 8 15 20 9 6 2 

13. Find the quartile deviation, mean deviation from median, from the following data 

Weight in kgs:  50 56 60 64 66 70 75 80 

No. of persons: 5 7 13 16 9 6 2 3 

14. The marks obtained by 30 students of a class in mathematics are given below. Find the range, 

quartile deviation, mean deviation from mean, standard deviation marks from the following data 

Marks obtained 10-25 25-40 40-55 55-70 70-85 85-100 

No. of students 2 3 7 6 6 6 

15. The distribution below shows the total number of runs scored by leading batsmen in first fifty 

one-day international cricket matches. Find mean deviation from mean and standard deviation 

number of runs. 

Runs scored(00’s) 10-15 15-20 20-25 25-30 30-35 35-40 

No. of batsmen 7 5 16 12 2 3 

16. Find missing frequency of the data given below which shows the mean daily pocket 

allowance of college students of a town isRs.180/-. Hence obtain standard deviation from the 

following data. 



 

 

 

 

58 

Daily pocket 

allowance 

(Rs) 

110-130 130-150 150-170 170-190 190-210 210-230 230-250 

No. of 

students 

7 6 9 13 - 5 4 

17. Compare the variability of the series A and B 

 Series A: 348, 457, 424, 682, 524, 388, 380, 438 

 Series B: 487, 508, 620, 382, 408, 266, 186, 218 

18. An analysisi of monthly wages of the workers of two organisations X and Y gave the 

following results. 

  X Y 

 No. of worker 50 60 

 Av. monthly wage 60 48 

 Variance 100 144 

 i) Which organization pays better wage? 

 ii) Which organization has more homogeneity in wages? 
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UNIT 4 

MOMENTS, SKEWNESS AND KURTOSIS 

4.1 Objective: Here the objective is to study the symmetry, asymmetry and the peakedness of a 

given data. 

4.2 Introduction: Moments are of special type of averages, these indicate the concentration of 

values at the centre part of the given distribution, spreadness, asymmetry, peakedness etc. 

Moments are usually denoted by Greek letter 
r . There are two types of moments, they are 

a. Central Moments or Moments about mean 

b. Raw Moments 

 

4.2a The rth order central moments: Therthorder central moments are the arithmetic mean of 

the sum of the rth power of  deviations of set of n observations taken from their mean. That is, if 

nxxx ,...,, 21 are the set of n observations with mean( x ), then therth order central moments or rth 

order moments about mean is given by 

 



n

i

r

ir xx
n 1

1
 , r = 1,2, . . .. (for raw data) 

For a frequency data ii f|X , i =1,2,...,n of a set of n values, rth order moments about mean is given 

by 

 



n

i

r

iir xxf
N 1

1
 , r  = 1, 2, . . .., and 




n

i

ifN
1

. 

Note that, 10  . 

 

4.2b Properties of Central moments 

a. First order central moment is always zero. i.e., when r = 1, first order moment about mean 

is zero. i.e., 

 



n

i

i xx
n 1

1 0
1

 , being the algebraic sum of deviations of set of values taken 

from their mean is zero always. 

b. Second order central moment i.e., 
2 is called the variance of the distribution. i.e., when r 

= 2, we have,  

 



n

i

i xx
n 1

22

2

1
 = variance. 

c. Third order central moment i.e., 3 is the measure of skewness of the distribution.  

 

d. Fourthorder central moment i.e., 
4 is the measure of kurtosis of the distribution.  

 

Remark. Moments about origin zero is given by 
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  



n

i

r

i

n

i

r

ir x
n

x
n 11

1
0

1
 , r =1, 2, . . .. 

 

4.3  The rth order raw moments: Therthorder raw moments is the arithmetic mean of sum of the 

rth power of  deviations of set of n observations taken from any arbitrary constant A. That is, if 

nxxx ,...,, 21 are the set of n observations, and A be any constant, then therth order raw moments or 

rth order moments about A, is given by 

 



n

i

r

ir Ax
n 1

1
 , r = 1,2, . . .. 

 

Note: The first order raw moment about origin zero is the ‘mean’ of the distribution. i.e., when r 

= 1, first order raw moment about zero is 

  



n

i

i

n

i

i x
n

x
n 11

1

1
0

1
 , the mean. 

Note: When r =1,   .AxAxAx
n

Ax
n

n

i

i

n

i

i   
 11

1

11
 

 

4.4 Relation Between rth order Central and Raw Moments 

Consider therth order central moments 

 



n

i

r

iir xxf
N 1

1
 , r  = 1, 2, . . .. 

 



n

i

r

ii xAAxf
N 1

1
 

 



n

i

r

ii xAdf
N 1

1
, where Axd ii  . 

 



n

i

r

ii df
N 1

1

1
 , since  Ax  

Thus we have,  

  


 
n

i

rrr

iC

r

iC

r

iC

r

iir ...drdrdrdf
N 1

1

3

1

32

1

2

1

1 1
1

321
  

  
 










n

i

n

i

i

rrr

iC

n

i

i

r

iC

n

i

i

r

ii f
N

...drf
N

drf
N

df
N 1 1

1

2

1

2

1

1

1

1

1
1

111
21

  

  rrr

i

n

i

iC

r

i

n

i

iCr ...df
N

rdf
N

r 1

2

1

2

1

1

1

1

1
11

21
  







 , where 



n

i

ifN
1

.  

  rr

rCrCr ...rr 1

2

1211 1
21

    

 

In particular, the first four moments about mean are 

When r = 1, we have    
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01   

 

When r = 2, we have 
2

12211222 21
22    CC  

2

1

2

122 2   , where 10  . 

2

122    

 

When r = 3, we have 
3

133

2

12311333 321
333    CCC  

3

1

3

11233 33   , where 10  . 

3

11233 23    

 

When r = 4, we have 
4

144

3

134

2

12411444 4321
4444    CCCC  

4

1

4

1

2

121344 464   , where 10  . 

4

1

2

121344 364    

 

Above formulae are enable us to find the moments about mean, once a constant and moments 

about any point or constant are known. 

 

4.5  Property of Change of Origin and Change of Scale on Moments 

The rth order central moments(moments about mean) is independent of change of origin but not 

independent of change of scale. That is, if   hAxu ii  , where A, the origin and h, the scale are 

two positive constants, then  

     



n

i

r

ii

r

rr uuf
N

huhx
1

1
 . 

Proof: Let nxxx ,...,, 21 are the set of n observations with mean( x ), then the standard deviation is 

given by 

 



n

i

r

iir xxf
N 1

1
 , r  = 1, 2, . . ..      (1) 

 

Let iu be a new variable such that   hAxu ii  , where A, the origin and h, the scale are two 

positive constants. Then,  

ii huAx 
       

(2)

 Taking sum over i =1,2,...,n on both sides (2)and dividing by n, we get 
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  n/uhn/An/x
n

i

i

n

i

n

i

i 



111

1

 
uhn/nAx 

 uhAx        (3) 

Therefore from equations (2) and (3), is given by 

      uuhxx ii        (4) 

Taking rth power on both sides of (4), and then multiplying by fi  and taking sum over i = 1, 2, ..., 

n, we get 

       



n

i

r

ii

r
n

i

r

ii uufhxxf
11

    (5) 

Dividing equation (5) throughout by ‘N’, we get 

    

   

N

uuf

h
N

xxf
n

i

r

ii
r

n

i

r

ii 







11  

        uhx r

r

r        (6) 

Where,    



n

i

r

iir xxf
N

x
1

1
 , r  = 1, 2, .... and     




n

i

r

iir uuf
N

u
1

1
 , for r = 1, 2, .... 

Equation(6) is independent of ‘A’, the origin but not independent of change of scale(h). Hence 

moments about mean are independent of change of origin but not independent of change of scale. 

 

4.6 Karl-Pearson’s β and γ Coefficients 

Karl-Pearson’s defined some coefficients which are based on first four central moments and they 

are given by 

3

2

2

3
1




  and 

2

2

4
2




   and 

11   and 322    

These β and γcoefficients’ are independent of units of measurements. Distribution is negatively 

skewed if 3 is negative and positively skewed if 3 is positive. 

 

4.7 Skewness 

Skewness indicates ‘lack of symmetry or asymmetry’ of a distribution. For a frequency 

distribution, if mean is more than median and median is more than mode (Mean > Median > 

Mode), then the distribution is said to be ‘positively skewed’ if mean is less than median less than 

mode i.e., Mean < Median < Mode, then the distribution is said to be negatively skewed, and if 

Mean = Median = Mode, i.e., if mean, median and mode coincide then the distribution is said to 

be symmetrically skewed or in simple, it is called a symmetric distribution. Thus for a symmetric 

distribution, 01  , and 32  . 

 

Note: that for any symmetric distribution, all odd ordered moments about mean are zero. That is, 

012 r , r = 0,1,2,3, . . .. In particular, 01  , 03  , etc. 
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Following are the curves represent the nature of distribution of observations                                                                                             

 

 

 

 

 

 

Positively skewed distribution                        Negatively skewed distribution  

(mean>median>mode)          (mean<median<mode)      

 

 

 

 

 

Symmetric distribution( .ZMX  ). 

 

4.8 Measurement of skewness 

There are mainly two types of measures to measure skewness of the distribution. Namely, they 

are 

a. Absolute measures 

b. Relative measures   

 

4.8.1 Absolute measures of Skewness 

Absolute measures of skewness are defined due to Karl-Pearson, and these are defined as follows  

a) MXSKP     

b) ZXSKP  , where X  is the mean, M, the median and Z is the Mode of the given data. 

Absolute measures of skewness due to Bowley is defined by 

c)    13 QMMQSKB  . 

 

Absolute measures have units of measurements and these are not ideal for comparing two or 

more sets of data. 

 

4.8.2 Relative Measures of Skewness 

Relative measures of skewness are defined due to Karl-Pearson, and are generally known as 

coefficient of skewness. Thus, Karl-Pearson’s coefficient of skewness is given by  

a) 


ZX
SKP


  , when mode is uniquely defined.  

b) 
 


MX
SKP




3
, when mode is ill defined, where X  is the mean, M, the median and Z is 

the Mode of the given data. 

c) Bowley’s coefficient of skewness is defined by 
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   
   13

13

13

213

13

13 22

QMMQ

QMMQ

QQ

QQQ

QQ

MQQ
SB














 , 

since   2Mmedian Q . 

This is also known as quartile coefficient of skewness. It is very useful when the data is highly 

skewed, data is very much affected by sampling fluctuations, and when frequency distribution 

has open end classes or of unequal class width. 

Relative measures are independent of units of measurements and thus good for comparative study 

of two or more sets of data. 

 

4.9 Limits of Karl-Pearson’s coefficient of skewness 

Karl-Pearson’s coefficient of skewness lies between -3 and +3. That is, 33  KPS . 

Proof: Consider, 

M
n

x

MX

n

i

i



1  

 

























 



n

i

i

n

i

i

n

i

i xx
n

Mx
n

Mx
n 111

111
    (1) 

( the sum of the absolute deviations is minimum when taken about median) 

Therefore, using equation(1), we get 

 

 

   




































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



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
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i
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i
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xxn
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n

xx
nMX

S

1

2

2

1

1

2

2

1

2

2

3

1

1
3

3


    (2) 

By using Cauchy –Schwartz inequality we have 











 n

i

i

n

i

i

n

i

ii baba
1

2

1

2

2

1

 

Letting bi =1, for i= 1,2,..., n we have 











 n

i

i

n

i

i ana
1

2

2

1

,        











n

i

n
1

1  

Implies, 

1

1

2

2

1



















n

i

i

n

i

i

an

a

         (3) 

Thus, on using equations (2) and (3), we get 
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3322
 KPKP SS  

33  KPS  

That is the limits or the range of Karl-Pearson’s coefficient of skewness is (-3 and +3). 

 

Remark: The above limits are rarely attained in practical cases. If SKP = 0, if x = M. 

 

4.10 Limits of Bowley’s coefficient of skewness 

Bowley’s coefficient of skewness lies between -1 and +1. That is, 11  BS . i.e. show that for 

any two positive constants, a and b, 11  BS . 

Proof: Consider any two positive constants, a and b, such that 

1





ba

ba
baba ,   (1)  

We know that  MQ 3  and  1QM  are both  non-negative . Thus, letting,   MQa  3  and  

 1QMb   in equation(1), we get  

   
   

1
13

13 




QMMQ

QMMQ
 

1 BS  

11  BS  

Thus, limits of Bowley’s coefficient of skewness lies between -1 and +1.  

 

Note 1: Suppose, SB = +1, if 
11 0 QMQM  , SB = -1, if MQMQ  33 0 , and SB 

= 0, if 1313 QQQMMQ  . 

 

Note 2: Sometimes it may happen that one of the coefficients of skewness give positive value 

while the other gives negative skewness. 

 

Note 3: In Bowley’s coefficient of skewness, the distribution factor of variations is eliminated by 

dividing the absolute measure of skewness i.e.,    13 QMMQ  , by the measure of 

dispersion 13 QQ  , quartile range. 

 

Note 4: the main drawback of Bowley’s coefficient of skewness is that it is based only on the 

central 50% part of the data and ignores the remaining 50% of the data towards the extremes. 

Note 4: Coefficient of skewness based on moments is  

 

 
 9652

3

12

21









KMS  
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Note that, SKM =0, if 01  , or 32  . But 0
2

2

4
2 




 always, and therefore SKM = 0, if 

01  . 

 

4.11 Kurtosis 

Kurtosis indicates the ‘flatness or peakedness’ of a distribution. Prof. Karl-Pearson suggested a 

measure to represent the frequency distribution in terms of curve called ‘convexity of the 

frequency curve’. Measure of Central values, dispersion and skewness do not give complete 

picture about the nature of the frequency distribution as will be clear from the kurtosis curves, in 

which all the three curves say A, B, and C are symmetric about the mean ‘  ’, and have the same 

range. Peakedness of the curve is measured by the Pearson’s coefficient 
2  or 

2 , is given by  

2

2

4
2




   and 322   . 

 

                                                                                  Leptokurtic curve(C), 32  , 02  . 

 

                                                                                   Mesokurtic curve(B), 32  , 02  . 

 

                                                                                   Platykurtic curve(A), 32  , 02  .                                                                                                                                                                                  

 

 

 

In the above, if the curve(A) is more flat then it is said to be ‘Platy Kurtic curve’, and in this case 

32  , i.e., 02  . If the curve of the type(B), which is neither flat nor peak is called the 

mesokurtic curve or normal curve. And in this case 32  , i.e., 02  . And If the curve of the 

type(C), which is more peaked then the curveis called the ‘Leptokurtic’ curve and in this case 

32  , i.e., 02  . 

 

Objective Questions 

1.For a symmetric distribution mean, median and mode are 

a. Equal       b. mean>median>mode     c. mean<median<mode d. None 

2.For a distribution, mean>median > mode is called 

a. Negatively skewed       b. positively skewed     c. symmetric        d. all 

3.For a distribution, mean< median < mode is called 

a. Negatively skewed       b. positively skewed     c. symmetric d. all 

4.Bowley’s coefficient of skewness lies between 

(-1, 0)       b. (-1, 1)       c. (1, 3)     d. (0, 1) 

5.Karl-Pearson’s coefficient of skewness lies between 

(-1, 0)       b. (-1, 1)       c. (-3, 3)     d. (0, 3) 
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Exercise 

1. A survey was conducted by a group of students as a part of their environment awareness 

programme. During the survey, they have collected the following data regarding the number of 

plants in a locality containing 50 houses. Find Karl-Pearson’s coefficient of skewness from the 

following data 

Number of plants 0-2 2-4 4-6 6-8 8-10 10-12 12-14 

No. of houses 1 5 9 15 6 9 5 

2. A physician examined and recorded the heartbeats(per minute) of 30 pregnant women in his 

hospital. Find Bowley’s coefficient of skewness from the following data 

Heartbeats/minute 65-69 70-74 75-79 80-84 85-89 90-94 

No. of pregnant 

women 

2 5 11 8 3 1 

3. Find the first two moments about mean for the following data  

Marks  30 35 40 45 50 55 

No. of students 5 16 27 15 8 3 
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BLOCK – II 

(PROBAILITY AND RANDOM VARIABLES) 

 

UNIT 5: INTRODUCTION TO PROBABILITY THEORY 

 

UNIT 6: RANDOM VARIABLE AND PROBABILITY DISTRIBUTIONS 

 

UNIT 7: MATHEMATICAL EXPECTATION OF A RANDOM VARIABLE 

 

UNIT 8: CENTRAL LIMIT THEOREM 
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UNIT 5 

INTRODUCTION TO PROBABILITY THEORY 

5.1 Objective 

The main objective of probability theory is to understand the concept of likelihood or chance or 

the possibility of occurrence of a random event.  

 

5.2 Introduction 

So far we have studied descriptive statistics, which are used to describe and summarize the data, 

especially raw data from a research sample. Thus descriptive statistics pertains to a small group 

that is, simply choose a group you are interested in, record data about the group, and then use 

summary statistics and graphs to describe the group properties and characteristics. That is, there 

is no uncertainty involved in it. But in real life situations a number of cases that exists which are 

uncertain or probabilistic. For example, in a coin tossing experiment, hardly 50% chance of 

getting head or a tail; a tuberculosis patient admitted to hospital may survive or die is not 50:50, a 

40% of body burnt patient may or may not survive, likewise, when a fair dice is thrown, either 

the face with number 1, or 2, or . . . , or 6 will appear up with a chance of 1/6 each, and in an 

another example, a 4th stage or the last stage bladder malignancy(type of cancer) patient may 

survive for 10 more years is may be almost 1 in1000 such patients, and so on. etc., which are 

probabilistic in nature. That is the certainty of happening of these events is not sure. Thus 

probability is a measure related to the study of occurrence of such random events, i.e., rate at 

which a random event occurs 

The literal meaning of the word ‘probability’ is either a ‘chance or possibility or likelihood’ of 

occurrence of a random event or a trial.  

 

Definition: Probability is defined as a measure of finding the degree of occurrence of an event.  

In other words, probability is defined as the chance of occurrence of an event. 

The concept of probability theory is based on set theory. ‘A set is a collection of objects, which 

are the elements of the set. If S is a set and x is an element of S, we write x ∈S. If x is not an 

element of S, we write x S. A set can have no elements, in which case it is called the empty set, 

denoted by ϕ (Dimitri P. Bertsekas and John N. Tsitsiklis)’. 

“If the set S contains a finite number of elements, say x1, x2,...,xn, we write it as a list of the 

elements, in braces: S = {x1, x2,...,xn}. For example, the set of all possible outcomes of a die roll is 

{1, 2, 3, 4, 5, 6}, and the set of possible outcomes of a coin toss is {H, T}, where H stands for 

“heads” and T stands for “tails” (Dimitri P. Bertsekas and John N. Tsitsiklis)”. 

 

5.3 Some Basics on Algebra of sets 

Sets under operations of union, intersection, and complement satisfy various identities(laws) 

which are given below: 

i. Null set: ϕ ={}. 

ii. Compliment of a set: Compliment of a set A is 
CA or A  or A  . 

iii. Union of two sets: A B. 

iv. Law of complement: A
CA = S; A

CA = ϕ. 
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v. Intersection of two sets: A B. 

vi. Associate law: (A B)   C = A (BC) 

vii.       Identity Laws: A  ϕ =A; A S = S; A S = A; A ϕ = ϕ; 

viii.       De Morgan’s Laws: (A B)c=Ac Bc;  (A B)c=Ac Bc 

 

5.4 Some Terminologies 

Experiment or trial: An experiment is a procedure to get possible outcomes. For eg. Coin 

tossing, dies throwing, picking an Ace card from a well shuffled pack of cards,  etc., are 

experiments. 

 

Deterministic Experiment: Suppose an experiment is repeated several times under identical 

conditions and the outcome obtained remain same then that experiment is called Deterministic 

experiment. For eg. lab experiments such as Physics, Chemistry etc., are in general deterministic. 

Say, for eg. 2H2 + O2           2H2O, at room temperature(230C) 

 

Random Experiment: Suppose an experiment is repeated several times under identical, or 

homogeneous conditions, the outcome obtained is not same in all trials, then that experiment is 

called random experiment. For eg. Coin tossing, dies throwing, picking an Ace or a King card 

from a well shuffled pack of cards, sales, purchase etc., are random experiments. 

 

Outcome: It is the result or output of a random experiment. For eg., in coin tossing experiment 

Head(H) and Tail(T), are the two outcomes. In dies throwing experiment, 1,2,3,4,5, and 6 are the 

outcomes. 

 

Sample space: It is the set containing all possible outcomes of a trial or random experiment. It is 

denoted by S or Ω. For eg. In coin tossing experiment, the sample space S is,  S ={H, T} 

 

Event: An event is a set containing few or all possible outcomes of a random experiment. Events 

are denoted by capital letters A, B, C etc. or, A1,A2,..., An. 

For eg., Let A be the event of getting an ‘even number’ when a dies is thrown once, then  A = 

{2,4,6}; Suppose the event B ={getting ‘prime number’ when a dies is thrown once}, then B = 

{2,3,5} and etc. 

 

5.5 Types of Events 

Simple event: An event contains single outcome is called simple event. For eg., let event A = 

{getting 6 in a single throw of dies},  then A= {6}; Let event B = {getting both heads when two 

coins are tossed}, then B={HH} and etc. 

 

Sure event: An event contains all possible outcomes of a random experiment is called sure event. 

It is equal to sample space(S). For eg. Let event A = {getting odd or even numbers in single throw 

of dies}, then A = {1, 2, 3, 4, 5, 6} = S; Let event B = {getting at most one head or both heads 

when coin is tossed once}, then B ={TT, TH, HT, HH}= S. 
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Null event: An event does contain any of the outcomes is called null event. It is denoted by   

and is given by   = {}. 

 

Union of events: Union of two events say A and B is the occurrence of either event A or B or 

both A and B. It is denoted by A B.  

For eg. When a dies is thrown once, events A and B are defined as A = {getting even 

No.}={2,4,6}; B ={getting  multiple of 3} = {3,6}, then A B={2,3,4, 6}. 

 

Intersection of events: Intersection of two or more events is the simultaneous occurrence of both 

or all events. It is denoted by A B or AB; A BC or ABC. 

For eg. When a dies is thrown once, events A and B are defined as A = {getting even 

No.}={2,4,6}; B ={getting  multiple of 3}={3,6}, then A B={6}. Suppose event C = {getting 

No. more than 4} = {5, 6}, then A BC  = {6}. 

 

Mutually exclusive events: Two or more events are said to be mutually exclusive if their 

intersection should be equal to null set or event. For eg., when a dies is thrown once, events A and 

B are such that A = {getting even No.} = {2, 4, 6}; B ={getting  odd no.} ={1, 3, 5}, then A B = 

ϕ ={}, the null event. 

 

5.6 Definitions of Probability 

5.6.1 Classical or Mathematical or A priori or uniformity definition of probability 

Statement:Let there be n equally likely, mutually exclusive, and exhaustive outcomes for a 

random experiment, out of which m  (1 ≤ m  ≤ n ) outcomes are favourable to the happening of 

an event A. Then the probability of an event A is denoted as )(AP and is given by 

)n(

)n(

ExperimentRandomaofoutcomespossibleAll

tooutcomesfavourableofNumber
)(

S

A

n

mA
AP   

Where, n(A) denote number of outcomes favourable to the happening of A, n(S) denote number of 

outcomes of the sample space S. 

 

Example 5.1: A coin is tossed two times. What is the probability of getting i) head both the 

times, ii) exactly one head, iii) at least one head, and iv)at most one head? 

Solution: given coin is tossed two times, then the sample space: S = {HH, HT, TH, TT}, i.e., n = 

4, possible outcomes. Now, let the events A and B be 

i. A={ head both the times}={HH}, implies m = 1 possibility, therefore, 

)(AP  = m/n = 1/4. 

ii. B={ exactly one head }={HT, TH}, implies m = 2 possibilities, therefore 

)(BP = m/n = 2/4 =1/2. 

iii. C={ at least one head }={ more than or equal to one head}={≥1}={HT, TH, HH}, implies 

m=3, therefore  )(CP = m/n = 3/4. 

iv. D ={ at most one head } = { less than or equal to one head} = {≤ 1 head} 
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D ={TH, HT, TT}, implies m=3, therefore  )(DP = m/n = 3/4. 

Note: It is known that in a pack playing cards there will be four suits of which 13 are diamonds(   

),13 are clubs (     ), 13 are spades (    ), and 13 are hearts (    ), thus totally 52 cards in a pack. 

Among this, 26 are red (diamond and heart), and 26 are of black(clubs and spades) coloured 

cards. Out of these 52 cards, there will be 4-Kings, 4-Queens, 4-Aces, 4-jacks, and each four of 2, 

3, . . .,10 in a pack.  

 

Example 5.2.  A card is selected at random from a pack of well shuffled playing cards. What is 

the probability of getting i) a king ii) an Ace  iii) a king or a queen iii) a king or a red 

card? 

Solution: It is known that in a pack there will be 52 cards. One card can be selected in 52C1= 52 

ways, i.e, n = n(S) = 52. Now we define events as 

i. A = { getting a king card} = {4C1m = 4} )(AP = m/n = 4/52 = 1/13. 

ii. B = {getting an Ace} = {4C1m = 4} )(BP = m/n = 4/52 = 1/13. 

iii. C = {getting a king or a queen} = {4C1+ 4C1m = 8}  )(CP = m/n = 8/52 = 2/13. 

iv. D = {getting a king or a red card} = {4C1+
13C1-

1C1m = 16}  )(DP = m/n = 16/52 = 

4/13. 

 

Example 5.3.  A dice are thrown once, what is the probability of getting i) an even number,   ii) 

an odd number,  iii) an even or odd number    iv) a prime number, v) an even or multiple of 3. 

Solution: A dies is thrown, then the sample space S = {1, 2, 3, 4, 5, 6} n  = 6. Then the events 

i. A ={getting an even Number} = {2, 4, 6}m = 3. Therefore )(AP = m/n = 3/6 =1/2. 

ii. B ={getting an odd Number} = {1, 3, 5}m = 3. Therefore )(BP = m/n = 3/6 = 1/2. 

iii. C ={getting an even or odd Number} = {( 2, 4, 6), or ( 1, 3, 5 )}m = 6. Implies, )(CP = 

m/n =  6/6 = 1. 

iv. D = {getting a prime number} = {2, 3, 5}m = 3. Therefore )(DP = m/n = 3/6=1/2. 

v. E ={an even or multiple of 3} = {2, 4, 6 or 3, 6}m = 4. Therefore )(EP = m/n = 

4/6=2/3. 

 

Limitations: Classical definition of probability has the following limitations: 

i.  All the outcomes of a random experiment are equally likely or equally probable. For 

example,  

a) probability of a candidate will pass in certain test is not 50%, since the two 

possible outcomes say, ‘pass and fail’ are the two exhaustive, mutually exclusive 

outcomes but not equally likely.  

b) If a person jumps from a running bus, then his probability of survival or death will 

not be 50%, though survival and deaths are the two exhaustive, mutually exclusive 

outcomes but not equally probable. 

ii. If the exhaustive number of outcomes of a random experiment is infinite or unknown. 
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5.6.2 Empirical or Statistical/Posterior definition of Probability (Richard Von Mises):If an 

experiment is performed repeatedly under essentially homogeneous and identical conditions, then 

the limiting value of the ration of the number of times the event occurs to the number of trials , as 

the number of trials becomes indefinitely large, is called the probability of happening of the 

event, it being assumed that the limit is finite and unique. Symbolically, if n trials an event A 

happens m times , then the probability of happening of A denoted as P(A), is given by 

n

m
limP(A)
n 

  

Note: Empirical probability is the probability of occurrence of an event based on the results 

obtained for a random experiment which is conducted actually for several times. 

 

Example 5.4. A symmetric die is rolled 180 times, what is the probability of getting exactly one 

6? Also find the number of times that 6 appears only once. 

Solution: We know that when a symmetric die is rolled once, P{getting exactly one 6}=1/6, since 

it is rolled 180 times, and each throw is independent of the other throws, therefore  we have 

P{getting exactly one 6 in 180 tosses} = (1/6)180, and the number of times the exactly one 6 

appears in 180 throws is180x(1/6)=30 times. 

 

5.6.2a Sampling with replacement: Here repetitions are allowed. Items ‘r( ≤ n)’ are to be drawn 

out of ‘n’, things in nr ways. i.e., nr samples of size r each using with replacement. For example,  

a. In ‘r’, tossing’s of a fair coin results in 2r possible outcomes.  

b. In ‘r’, tossing’s of a fair die results in 6r possible outcomes. 

 

5.6.2b Sampling without replacement: Here an item once chosen is not replaced before the next 

draw is made, so that repetitions are not permitted.  

a. If ordered samples of size ‘r ( ≤ n)’ are drawn from n things, then there are nPr samples 

without replacement. Symbolically, nPr = n!/(n-r)!. 

b. If order is not considered then the samples of size ‘r ( ≤ n)’ are drawn from n things in 
nCr,  ways without replacement. Symbolically, 

nCr= 








r

n
= n! / [r!(n - r)!]. 

 The number of ways in which the population of n elements can be partitioned in to k 

subpopulations of sizes r1, r2,..., rk = n, 0 ≤ ri ≤ n, is given by 

!r!r!r

!n

r,...,r,r

n

kk 










2121

, 

which is known as multinomial coefficients. 

 

Example 5.5. The birthdays of r students of a class form a sample of size r from the 365 days of 

a certain year. Then the probability that all r birthdays are different is 365Pr/(365)r.  
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Example 5.6. An urn contains 3 red, 4 green and 5 blue balls. A sample of size 6 is selected at 

random without replacement. Then, the probability that the sample contains 2 red, 3 green and 

one blue ball is 

6
12

1
5

3
4

2
3

6
12

1
5

3
4

2
3

C

CCC 



































 . 

Example 5.7. A purse contains five Rs.100/- notes, ten Rs.200/- green and four Rs.500/-notes. 

Five notes are selected at random without replacement. Then, the probability that the sample 

contains two Rs.100/- notes, two  Rs.200/- green and one Rs.500/-notes is 

5
19

1
4

2
10

2
5

5
19

1
4

2
10

2
5

C

CCC 



































 . 

 

5.6.3 Axiomatic Approach of Probability 

Statement: Let S be a sample space and A be an event such that AS. Let a set function P is 

called a probability of occurrence if it satisfies the following conditions: 

i.  P(A) ≥ 0 

ii. P(S) = 1 

iii. Let A and B be any two disjoint events defined on S, then P(A B) = P(A) + P(B). In 

general, A1,A2,...,Ak  are k disjoint sets, then 









 k

i

i

k

i

i )A(PAP
11

.  

 

5.7. Some Theorems on Probability of events 

This section provides some simple theorems on probability of events which will help to evaluate 

probabilities of occurrence some events.  

 

Theorem 1. Probability of impossible event (or null event) is zero. i.e., P(ϕ) = 0. 

Proof: let S be the sample space of a random experiment and ϕ, the null event or the impossible 

event. Then,  

S ϕ = S =>P(S ϕ) = P(S) 

Since S and ϕ are mutually exclusive, and therefore 

P(S ϕ) = P(S) + P(ϕ) = P(S) 

Since P(S) = 1, we have 

  =>1 + P(ϕ) = 1 =>P(ϕ) = 0.  Hence proved. 

 

Theorem 2. Probability of the complimentary event Ác is given by 

P(Ac) = 1 - P(A) 

Proof: Since A and Ac are mutually exclusive events, we have 

P(A Ac) = P(S) = 1 

=>P(A) + P(Ac) = 1 

=>P(Ac) = 1- P(A). Hence proved. 
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Cor.  It is known that P(A) = 1 - P(Ac) ≤ 1, always (P(Ac) ≥ 0, by axiom 1). Further, since P(A) 

≥ 0, (by axiom 1), and therefore, 0 ≤ P(A) ≤ 1. 

Implies that probability of an event lies between 0, and 1, or the limits of probability of an event 

is (0, 1). 

 

Theorem 3. Probability For any two events A and B we have  

i) P(Ac B) = P(B) - P(A B)  ii)   P(A Bc) = P(A) - P(A B). 

Proof: From the Venn diagram, we have B = (A Bc )   (A B).  

                                                       Since A B and A Bc are two disjoint events, we have 

                                                       by axiom 3,  

                                                           P(B) = P{(A Bc )   (A B)} 

                                                                    = P(A Bc ) + P(A B) 

                                                      Implies,  P(A Bc ) = P(B) -  P(A B). 

 

Similarly we can prove (ii) (proof left to the exerciser). 

 

Theorem 4. If  A B, then 

         i) P(Ac B) = P(B) - P(A) ii) P(A) ≤ P(B). 

Proof: i) From the Venn diagram, B = A  (Ac B) 

                                                     Since A and Ac B are two disjoint events, we have by 

                                                     Axiom 3,  

                                                       P(B) = P{A  (Ac B)} 

                                                              = P(A) + P(Ac B) 

                                                      Implies,  P(Ac B ) = P(B) -  P(A). 

Since P(Ac B ) ≥ 0, always, =>P(B) -  P(A) ≥ 0 =>P(B) ≥  P(A).  

Thus, when A B, then P(A) ≤ P(B). 

 

Cor. 2. When B A, then P(B) ≤  P(A) and P(A Bc) = P(A) - P(B). 

(proof left to the exerciser). 

 

5.7.1 Addition Theorem of Probability for any two events 

 Theorem 5:P(A B) = P(A) + P(B) – P(A B).  

 

Proof: From the Venn diagram, A B = A  (Ac B), it can be observed that, the events  A and 

Ac B  are mutually disjoint events, and therefore by taking probability on both sides we get 

 

P(A B) = P{ A  (Ac B)}                                                                                 

                                                                = P(A) + P(Ac B) 

                                          By theorem 3-i, we have 

                                            P(A B) = P(A) + P(B) -  P(A B).   
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Example 5.8. A dies is thrown once. What is the probability of getting i) an even number or a 

prime number, ii) an odd number or a multiple of 3 

Solution: Given that dice is thrown once. Then the sample space, S is  

S = {1,2,3,4,5,6}=>n = 6.  

Let A and B be two events such that, 

i) A ={getting an even number}={2,4,6} =>m1=3 and  

B={ getting a prime number}={2,3,5} =>m2=3 

Then, P(A) = m1/n = 3/6 = 0.5;  and P(B) = m2/n = 3/6 = 0.5 

A B ={2} =>m3 = 1 =>P(A B) = m3/n = 1/6 

Thus by addition theorem, we have 

P(getting an even number or a prime number) = P(A B) = P(A) + P(B) -  P(A B) 

               = 3/6 + 3/6 – 1/6 = 5/6  

  Or     P(A B) = 0.5 + 0.5 + 0.17 = 0.83  

ii) Let C and D be two events such that, 

C ={ getting an odd number}={1, 3, 5} =>m1= 3, and  

D ={ getting a multiple of }={3, 6} =>m2= 2 

Then, P(C) = m1/n = 3/6 = 0.5, and P(D) = m2/n = 2/6 = 0.33 

CD = {3} =>m3 = 1 =>P(CD) = m3/n = 1/6 

Thus, by addition theorem, we have 

P(getting an odd number or a multiple of 3) = P(CD) = P(C) + P(D) -  P(CD) 

             = 3/6 + 2/6 – 1/6 = 4/6  

  Or     P(CD) = 0.5 + 0.33 - 0.17 = .66  

 

Cor. 1. If A and B are mutually exclusive(mutually disjoint), then  

A B = ϕ =>P(A B) = P(ϕ) = 0, implies P(A B) = P(A) + P(B). 

 

Cor. 2. If A, B and C are three non mutually exclusive events then  

P(A BC) = P(A) + P(B) + P(C)  -  P(A B) - P(BC)  - P(AC)  + P(A BC).    

Proof: Consider the LHS of above 

P(A BC) = P[(A B) C] 

         = P(A B) + P(C) - P[(A B)C] 

Using theorem 5, we have 

P(A BC) = P(A) + P(B) -  P(A B) + P(C) - P[(AC)   (BC)] 

          = P(A) + P(B) + P(C) - P(A B) - {P(BC) + P(AC) - P(A BC)}, ( by theorem 5). 

Thus we have, 

P(A BC) = P(A) + P(B) + P(C) - P(A B) - P(BC) - P(AC) + P(A BC). 

Hence proved. 

 

Remark. Generalisation of Addition Theorem of probability for any k events 

Theorem 6: For k events A1, A2, ..., Ak, we have  
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)A...AAA(P)(...

...)AAA(P)AA(P)A(PAP

k

k
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i

ii
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
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1

1 11
1

1

 

           

 

5.8 Dependent Events: Two or more events are said to be dependent then the occurrence of one 

event affects the occurrence of other events. 

For example,  

i) The chance of withdrawing an amount (say, in Rupees (Rs.)) for the second time from a 

savings bank accont depends on the first withdrawn amount.  

ii) The probability of drawing a ball from a box for the second time is dependent up on first 

drawn ball(s), etc.   

 

5.8.1 Conditional Probability and Bayes’ Theorem 

5.8.1a Conditional Probability: Let A and B be any two events, then the conditional probability 

of an event A when B has already  or happened is symbolically denoted as P(A|B) and is given by 

 
 
 

  .BPif,
BP

BAP
B|AP 0


  

Similarly, the conditional probability of an event B when A has already happened is denoted as 

P(B|A), P(A) > 0, and is given by 

 
 
 

  .APif,
AP

BAP
A|BP 0




 

Note:  B|AP  denotes the probability of occurrence event A for given B, when event B has 

happened already. Similarly,  A|BP  denotes the probability of occurrence event B, for given A, 

when event A has happened already. 

 

Theorem 7. Multiplication ( or Compound) Probability theorem 

Statement: The probability of simultaneous occurrence of any two events A and B, is given by  

   
       

      .APif,A|BPAP

.BPif,B|APBPBAP

0

0





 

Proof: By definition of conditional probability, when event B, has happened already is given by 

 
 
 

  .BPif,
BP

BAP
B|AP 0




 
           .BPif,B|APBPBAP 0

 Similarly, when event A, has happened already, then we have 

 
 
 

  .APif,
AP

BAP
A|BP 0




 
           .APif,A|BPAPBAP 0
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Hence proved. 

 

Theorem 8: For any three events A, B and C 

      )C|BA(PC|BPC|APC|BAP   
Proof : By definition of conditional probability, we have 

 
  

)C(P

)CB(CAP
C|BAP


  

Since  

      )BA(PBPAPBAP  ,  

we have therefore 

 
   

   
)C(P

)CBA(P

)C(P

CBP

)C(P

CAP

)C(P

)CBA(PCBPCAP
C|BAP













 

         )C|BA(PC|BPC|APC|BAP   
Hence proved. 

 

5.8.1b Examples on Conditional and multiplication theorem of Probability 

Example 5.9. A box contains 4 yellow and 6 white tennis balls. Two draws are made and in each 

draw a ball is drawn at random. What is the probability that  

a) both draw gives yellow balls when first drawn ball is replaced before the second draw is 

made? Secondly, first drawn ball is not replaced before the second draw is made? 

b) first draw gives a yellow and second draw gives  a white ball when first drawn ball is 

replaced before the second draw is made? Secondly, first drawn ball is not replaced before 

the second draw is made? 

Solution: Total number of balls =10, of which 4 yellow, 6 white. Now let, the events A and B be 

A = First draw gives yellow ball 

B = Second draw gives yellow ball 

Here as per the given condition, second draw depends on first draw. Thus, we have 

P[Both draw gives Yellow balls] = P(A B) = P(A)P(B|A) 

a. i. P[both draw gives yellow balls when first drawn ball is replaced before the second draw 

is made ] = P(A B) = P(A)P(B|A) 

                         = (4C1/
10C1 )(

4C1/
10C1) = 16/100 = 0.16. 

ii. P[both draw gives yellow balls when first drawn ball is not replaced before the second 

draw is made] = P(A B) = P(A)P(B|A) 

                      = (4C1/
10C1 )(

3C1/
9C1) = 12/90 = 2/15 = 0.1333. 

 

b. i. P[first draw gives yellow ball and second gives white ball when first drawn ball is 

replaced before the second draw is made ]  

= P(A B) = P(A)P(B|A)                                                                     

= (4C1/
10C1 )(

6C1/
10C1)  = 24/100 = 0.24. 
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ii. P[first draw gives yellow ball and second gives white ball when first drawn ball is 

                                                           not replaced before the second draw is made]  

= P(A B) = P(A)P(B|A) 

                 = (4C1/
10C1 )(

6C1/
9C1) = 24/90 = 0.2667. 

 

5.8.2 Bayes’ Theorem(Thomas Bayes).  

In previous section we have discussed about the conditional probability, and it indicates the 

likelihood of an outcome occurring, based on a previous outcome having occurred in similar 

circumstances. Often we come across the analysis with initial or prior probability estimates. In 

such a scenario one could apply Bayes’ theorem, which is based on the prior knowledge of 

conditions that might be related to the event. For example, if the risk of developing health 

problems is known to increase with age, Bayes’ theorem allows the risk to an individual of a 

known age to be assessed more accurately by conditioning it relative to their age, rather than 

assuming that the individual is typical of the population as a whole. 

 

Statement: If E1, E2,..., En are mutually disjoint events with P(Ei) > 0, for all i = 1, 2, . . ., n, then 

for any arbitrary event A, which is a subset of 
i

n

i
E

1
 , such that P(A) > 0, we have 

 

n,...,,i,
)A(P

)E|A(P)E(P

)E|A(P)E(P

)E|A(P)E(P
)A|E(P ii

n

i

ii

ii
i 21

1






 

Proof: Since 



n

i

iEA
1

, we have   i

n

i
i

n

i
EAEAA 










 11
, (by distributive law) 

Since   ii EEA  , i = 1, 2, . . .,n; and are mutually disjoint events, we have by addition 

theorem of probability 

     i

n

i

i

n

i
EAPEAP)A(P 









 



1

1
 

Since by multiplication theorem of probability, we have 

  ),E|A(PEP)A(P ii

n

i





1

       (1) 

Also, since )A(P > 0, we have by multiplication theorem of probability 

  )A|E(P)A(PEAP ii          (2) 

Therefore, from (1) and (2), we have 

 

  )E|A(PEP

)E|A(P)E(P

)A(P

EAP
)A|E(P

ii

n

i

iii
i









1

. 

Note: P(Ei) > 0, for all i =1, 2, . . ., n are known as ‘prior’ probabilities because they exist before 

we gain any information from the experiment itself 
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The probabilities )E|A(P i , i =1, 2, . . ., n are called likelihoods  because they indicate how 

likely the event A under consideration to occur given each and every a prior probability. 

The probability )A|E(P i , i =1, 2, . . ., n are called ‘posterior probability’, because  they are 

determined after the results of the experiment are known. 

 

Example 5.10:  A box I contains 3 red and 4 yellow balls and another box II contains 4 red and 5 

yellow balls. One ball is drawn from one of the boxes, and is found to be red. Find the probability 

that it was drawn from box I. 

Solution: Let us define the events 

E1: Box I is selected 

E2: Box II is selected 

A: Drawing a red ball 

Then we have, P(E1) = 1/2,  P(E2) = 1/2, P(A|E1) = 3C1/
7C1 = 3/7  and P(A|E2) = 4C1/

9C1 = 4/9 

Now, our aim is to find the probability of getting red ball from the I-box is P(E1|A), and is given 

by the Bayes’ theorem as 

 
49090

9
4

2
1

7
3

2
1

7
3

2
1

2

1

11
1 .

)E|A(PEP

)E|A(P)E(P
)A|E(P

ii

n

i












 

Example 5.11: A boy is known to speak the truth 4 out of 5 times. He throws a die and reports 

that the number obtained is a six. What is the probability that the number obtained is actually six? 

Solution: Let the events be 

E1: Six is obtained on the die 

E2: Non-Six obtained on the die 

A: Boy reports that the number obtained is Six 

Then, P(E1) = 1/6, P(E2) = 5/6 and P(A|E1) = 4/5 = Probability that Boy reports six and it is 

actually six.  

And P(A|E2)= probability that boy reports six and it is not actually six =1/5 

Now our aim is to find P(E1|A) = probability that the number obtained is actually six when he 

reported  it as six is given by Bayes’ theorem as 

 

 
44440

9

4

5
1

6
5

5
4

6
1

5
4

6
1

2

1

11
1 .

)E|A(PEP

)E|A(P)E(P
)A|E(P

ii

n

i












 

Example 5.12. A company has two machines to produce a particular product. Machine A 

produces 45% of the products and machine B produces 55%. The defective rate for machine A is 

8% and is 10% for machine B. If a defective item is observed, what is the probability that it was 

from machine A. 

Solution: Let the events be 

E1= machine A produces items  

E2= machine B produces items 

A= It is defective  
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P[E1] =0.45, P[E2] = 0.55, P[A|E1] = 0.08, P[A|E2] = 0.10 

Then by Bayes’ theorem, probability that defective item was from machine A is given by 

 
3950

0910
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1055080450

080450
2

1

11
1 .
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....

..

)E|A(PEP

)E|A(P)E(P
)A|E(P

ii
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i
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









 

Example 5.13. A police radar gun is 98% accurate, that is it indicates that a car is speeding when 

the car is actually is with probability 0.98 and indicates that the car is not speeding when it is not 

with probability 0.98. Your teenager speeds 75% of the times. If she comes home and tells you 

that she got the ticket, what is the probability that she was speeding?  

Solution: Let the events be 

E1 = car was speeding  

E2 = car was not speeding 

A = she got the ticket  

P[E1] = 0.75, P[E2] = 0.25, P[A|E1] = 0.98, P[A|E2] = 0.02 

Then by Bayes’ theorem, probability that she was speeding is given by 

 
99320
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Example 5.14. A doctor is to visit a patient and from past experience it is known that the 

probability that he will come by train, bus, or scooter are respectively 3/10, 1/5, and 1/10, the 

probability that he will come by some other means of transport being therefore 2/5. If he comes 

by a train, the probability that he will be late is ¼, if by bus is 1/3 and if by scooter is 1/12. If he 

uses some other means of transport it can be assumed that he will not be late. Then 

a. what is the chance he will be late?  

b. when it is known that he arrived late, what is the probability that he comes by train? 

Solution: Let the events be 

E1: Doctor comes by train;  E2: Doctor comes by bus 

E3: Doctor comes by scooter;  E4: Doctor comes by some other transport 

A : He arrived late 

a. P[he will be late] = P(A) = P[AE1 or AE2 or AE3 or AE4] 

Since AE1, . . ., AE4 are mutually exclusive, we have 

P(A) = P[AE1 ] + P[AE2] +P[ AE3 ] + P[ AE4] 

 = P[E1]P[A|E1] + P[E2]P[A|E2] + P[E3]P[A|E3] + P[E4]P[A|E4] 

            = 18/120 = 0.15. 

b. By Bayes’ theorem  

P[ he comes by train when it is known that he arrived late] = 
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5.9 Independence of Events 

Let A, B ϵ S, the sample space with P(B) > 0, then by the multiplication rule we have 

   )B|A(P)B(PBAP  
In many experiments, the information provided by B, does not affect the occurrence of event A, 

that is, P(A|B) = P(A), and thus we have  

  )B(P)B(PBAP   
Definition:Two or more events are said to be independent, if the occurrence of one event does 

not affect in any way the occurrence of the other events. Symbolically, if nA,...,A,A 21  are n 

independent events, then 

  )A(P...)A(P)A(PA...AAP nn  2121  
In particular, if two events A and B are two independent events then we have 

   )B(P)A(PBAP  
For example,  

i) When two coins are tossed simultaneously, getting “Head(H)” on the first coin is 

independent of getting “head(H)” on the second coin,  

ii) Chance of hitting the target for the first time is independent of chance of hitting the same 

target for the second time,  

iii) Probability that of solving a mathematical problem is independent of solving another 

problem in mathematics,  

iv) Probability or the chance of getting male child for the first time is independent of getting 

male child for the second time, etc. 

 

Note: If A and B are independent events, then      BPAPBAP  , which implies  

 
 
 

 
 

)A(P
BP

B(P)AP

BP

BAP
B|AP 







 
and   

 
 
 

 
 

)B(P
AP

B(P)AP

AP

BAP
A|BP 





 .

 

5.9.1. Theorems on independent events 

Theorem : If A and B are independent events, then 

i) A and Bc, ii) Ac and B, and iii) Ac and Bc are also independent. 

Proof: Since A and Bare independent implies   )B(P)A(PBAP     (*) 

  )B(P)A(P)A(P)BA(P)A(PBAP.i c    (from *) 

  )B(P)A(P)B(P)A(P c 1  
implies A and Bc are independent.  

  )B(P)A(P)B(P)BA(P)B(PBAP.ii c     (from *) 

  )A(P)B(P)A(P)B(P c 1  
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       implies Ac and Bare independent. 
 

   

    )B(P)A(P)B(P)A(P

)A(P)B(P)A(P

)B(P)A(P)B(P)A(P

)BA(P)B(P)A(P)BA(P)BA(PBAP.iii

cc

cc









11

11

1

11

,   

implies, Ac and Bc are independent. 

 

5.9.2. Pair-wise independence of events:  Let A1, A2, . . . , Anbe n events defined on same 

sample space S, such that P(Ai) > 0; i=1,2,,...,n. These events are said to be pair-wise independent 

if every pair of two events is independent. 

 

Definition: The events A1, A2, . . . , Anare said to be pairwise independent if and only if  

  n,...,,jifor),A(P)A(PAAP jiji 21

 
In particular, if the events A1, A2, A3 are pair-wise independent if and only if 

  )A(P)A(PAAP 2121 

   )A(P)A(PAAP 3131 

   )A(P)A(PAAP 3232 
 

 

5.9.3 Mutually Independent Events. Let U be a family of events from S, the sample space. We 

say that the events U are pairwise independent if and only if, for every pair of distinct events A,B 

ϵ U, 

P(AB) = P(A)P(B) 

In other words, the n events A1, A2, ..., An in a sample space S are said to be mutually independent 

if  

  n,...,,rfor),A(P)A(P)A(PA...AAP iriiirii 212121 

 
i.e., the n events are said to be mutually independent if they are independent by pairs, and by 

triplets, and by quadruples, and so on. 

 

5.10   Examples on independence of events 

Remark: Some rules 

i. P(x: at least one)  = P(x ≥ 1) = 1 - P(x < 1) = 1- P( x = 0) = 1- P(None).  

Thus in general, 

P(x: at least k)  = P(x ≥ k) =1- P(x < k)  

ii. P(x: at most one)  = P(x ≤ 1) = P(x = 0 or 1), if x= 0 ,1,2,...k.  

Thus in general,  

P(x: at most k)  = P(x ≤ m) = P(x = 0 or 1 or 2 or,..., or m). 

 

Example 5.15. Two sportsmen A and B hitting a certain target with probability 1/2, and 3/8 

respectively. If a chance is given to them to hit a particular target what is the probability that i. 
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the target is hit? ii. At the most one of them hits the target?  iii. A and B hit it?  iv. 

None hit the target? 

Solution: Given that, A hits the target with probability 1/2,  

i.e., )A(P = 1/2, implies, )A(P)A(P  1  = 1 – 1/2 = 1/2 

similarly, )B(P =2/5 => )B(P)B(P  1  = 1- 2/5 = 3/5  

i. P(the target is hit) = P(x:at least one hits the target) 

 =P(x≥1)=1-P(x<1) =1-P(x=0)=1- P(none hits the target = A B ) 

Since events A, and B are independent implies A& Bare also independent. Thus 

P(the target is hit)= 1- P(none hits the target) =1- P( A B ) 

           =1-P( A )P( B ) 

           =1- (1/2*5/8) 

          = 1- 5/16 = 11/16 = 0.6875~ 0.7. 

Alternatively, 

P(the target is hit) = )BA(P)B(P)A(P)BA(P   

Since events A, and B are independent,  )B(P)A(P)BA(P   and thus we have 

P(the target is hit) = )B(P)A(P)B(P)A(P)BA(P   = 1/2 + 2/5 – (1/2)(2/5) = 0.7 

 

ii. P(At the most one of them hits the target) = P(x≤ 1) = P(x = 0 or 1) 

      =>P(None or 1 hits it) = P( A B  or A B  or A B ) 

              = P( A B ) + P( A B ) + P( A B ) 

              = P( A )P( B ) + P( A )P( B ) + P( A )P( B ), (since A&B are 

independent) 

=>P(None or 1 hits it)   = 1/2*5/8 + 1/2*3/8 +1/2*5/8 = 13/16. 

iii. P(A and B hit the target) = P(AB) 

= P(A)P(B), (⸪ events A, and B are independent) 

=1/2*3/8=3/16. 

iv. P(None hit it) = P( A B ) = P( A )P( B ), (since A,&B are independent=> A& B   are also 

independent) 

=>P(None hit it) = 1/2*5/8=5/16. 

 

Example 5.16:The odds against the wife who is 45 years old survives till she is 75 is 7:4 and her 

husband now 50 years who survives till he is 80 is 5:4. Find the probability that  

i. Both will be alive 

ii. At least one of them will be alive 

iii. One of them will be alive, for 30 more years   

Solution: let the events A and B be 

A: wife will be alive for 30 more years 

B: Husband will be alive for 30 more years 

Then P(A) = 4/(7+4) = 4/11  and P(B) = 4/(5+4) = 4/9. Therefore,  

)A(P)A(P  1  = 7/1,  and )B(P)B(P  1 = 5/9.  

We assume that the survival of an individual is independent of the other, and hence  
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i. P(Both will be alive) = )B(P)A(P)BA(P   = 4/11 *4/9 =16/99,  (since A and B are 

independent). 

ii. P(at least one them will be alive) = 1- P(None alive) 

       = 1- P( A B )  

             A and B are independent=> A’ and B’ are also independent, implies 

       = 1- P( A )P( B )  = 1- (7/11*5/9) 

       = 1- 35/99 =64/99.  

 

iii. P(One of them will be alive) = P( A B  or A B ) = P( A B ) + P( A B ) 

             Since A and B are independent => A& B and A & Bare also independent, implies 

     = P( A )P( B ) + P( A )P( B ),     

    = 4/11 * 5/9  + 7/11 *4/9 = 48/99. 

Example 5.17: An electric circuit of a system contains three components, each work 

independently with probability 0.85, 0.8 and 0.9. System works if all components work, then 

what is the probability that the system works? 

 

Solution: Let the events be 

A: component 1 works;  B: component 2 works, and C: component 3 works. Then 

)A(P = 0.85, implies, )A(P)A(P  1  = 1 – 0.85 = 0.15 

similarly, )B(P = 0.8 => )B(P)B(P  1  = 1- 0.8 = 0.2 and )C(P  = 0.10 

P(the system works) = P( CBA  ) = 1- P( CBA  ). 

Since all the 3 components work independently, i.e., A, B, C are independentand therefore 

A , B&C are also independent, therefore  

P(the system works) = 1- P( A )P( B )P(C ) = 1- (0.15*0.20*0.10) = 1- 0.003 = 0.997. 

 

Example 5.18: Three students A, B and C, whose chances of solving a problem in Mathematics 

are 1/2, 3/5 and 2/3 respectively. If a problem is given to them and suppose all of them try 

independently then what is the probability that  

i. the problem will be solved? 

ii. A and B solve it? 

iii. None of them solve it? 

 

Solution: Let the events be 

A: Student A solves the problem;  B: Student B solves the problem and C: Student C solves the 

problem. Then,  

)A(P = 1/2, implies, )A(P)A(P  1  = 1 – 1/2 = 1/2 

similarly, )B(P = 3/5 => )B(P)B(P  1  = 1- 3/5 = 2/5 and )C(P  = 1/3 

Now, 

i. P(the problem is solved) = P( CBA  ) = P(at least one solves it) 

     = 1- P(none solve it) = 1- P( CBA  ). 

Since A, B and C are independent, implies A , B&C are also independent, thus we have, 
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P(the problem is solved)= 1- P( A )P( B )P( C ) = 1- (1/2*2/5*1/3) = 1- 1/15 = 14/15 = 0.933. 

 

ii. P(A and B solve it) = P(ABC ) = P(A)*P(B)*P(C )  

                         = 1/2 *3/5 *1/3 = 1/10 =0.1,     (since A, B and C are independent) 

 

iii. P(none solve it) = P( CBA  ) = P( A )P( B )P(C ) = 1/2*2/5*1/3=1/15=0.037. 

 

Objective Questions 

1. Limits of probability of an event is 

a)  (-1, 0), b) (0, 1) c) (-1, 1) d. None 

2. Probability of the sample space is  

a) 0 b) 1 c) -1 d) + 1 

3. For any two mutiuallly exclusive events A and B, 

a) SBA      b) ABA   c)  BA   d) SBA   

4. If P(A) = 0.8, P(B)=0.4 and P( BA ) = 0.5, then P( BA ) is 

a) 0.6  b) 0.75  c) 0.8  d) 0.7 

5. If P(A) = 0.9, P( BA ) = 0.6, and P( BA ) = 0.4, then P(B) is 

a) 0.5  b) 0.7  c) 0.1  d) 0.2 

 

Exercise  

1. A box has 9 tickets marked with numbers 1,2, 3,...,9. Two tickets are drawn at random from 

the box. Find the probability that both the numbers drawn are even or odd. 

2.  In Bangalore city 25%  people read the news paper X and 40% read the news paper Y and 

15% read people read both the news papers. Find the probability that a randomly selected 

person read at least one of these news papers.  

3. Four cards are drawn from a pack of playing cards. What is the probability that  i. All are 

diamonds, ii. One card of each suit, iii. There are two spades and two hearts.  

4. What is the chance that a leap year selected will contain 53 Sundays? 

5. Two chess players A and B play 10 games of chess of which 6 are won by A and 3 are won by 

B, and one in a tie. They agree to play tournament of three games. Find the probability that i. 

A win all the three games,  ii. Two game end in a tie, iii. A and B win alternatively iv. B wins 

at least one game 

6. Two fair dice are rolled once. Find the probability that the sum of the numbers obtained is i. 7 

or 9 ii. Less than 10, iii. Sum is divisible by 3 and 4,  iv. The sum of the numbers exceeds to 5, 

and v. Both numbers obtained are even. 

7.  If the letters of the word “REGULATIONS”, be arranged at random, what is the chance that 

there will be exactly 4 letters between R and E 

8. What is the probability that four S’s come consecutively in the word “MISSISSIPPI”?   

9. If the letters of the word “MATHEMATICS” be arranged at random, find the probability that 

all ‘vowels’ come together. 

10. A box contains 10 floppy disks, 3 of which are defective, 3disks are drawn at random from  

this box without replacement. Events A and b are defined as follows: 
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A: At least 2 of the floppy disks that are drawn are defective 

B:At least 1 of the floppy disks is defective 

Then what is i) P(A)?   ii) P(B)?    iii. P(A B)? and   iv) are A&B independent? 

11. A problem in statistics is given to 3 students A, B, and C whose chance of solving it are  1/2, 

3/4 and 1/4 respectively. What is the probability that the problem will be solved? 

12. A, B, and C are independent witnesses of an event which is known to have occurred. A 

speaks truth 3 times, out of 4, B 4 times out of 5, C 5 times out of 6. What is the probability 

that the occurrence will be reported truthfully by majority of 3 witnesses? 

13. A can solve 805 of the problems given in a text book; B can solve 70% of the problems of 

the text book. If a problem is given to both and they try to solve it separately, find the 

probability that the a) problem is solved,   b) problem is not solved. 

14. Four persons A, B,C and D are able to hit the a target 8, 4,5, and 5 times respectively with 10 

shots each. If each of them fires at the target once, what is the probability i) that the target is 

hit? ii) any two of them hit it iii)A, B, C hit it but not D? 

 15. The odds favouring the survival of a man aged 60 for 20 more years are 2 to 6, and that of a 

women aged 55 for 20 more years are 3 to 5. What is the probability that  

 a) A man aged 60 & his wife aged 55 will survive for 20 more years? 

 b) at least one of them will survive? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNIT 6 

RANDOM VARIABLE AND PROBABILITY DISTRIBUTIONS 

 

6.1 Objectives  
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The aim is to introduce the concept of random variable (r.v.) and probability distribution of an 

r.v. Concept of random variable technique is a mapping from the sample space (S) to the real line 

and hence to introduce the induced probability measure.  

 

6.2 Introduction 

In the previous chapter we have discussed about the assignment and computation of probabilities 

of occurrence of events. But in several real experiments we may be more interested in how many 

times an event has occurred or happened, not just in knowing which outcome has occurred, i.e., 

the number(s) associated with them. For example, when n fair coins are tossed simultaneously, 

when a pair of dies is rolled, here one may be interested in knowing the number of times the head 

appears, the sum of the points obtained on dies respectively. Thus, we associate a real number 

with each outcome of the experiment. That is, we consider a function whose domain is the set of 

possible outcomes, and whose range is a subset of the set of real and such a function is called a 

random variable. 

That is more precisely, consider a coin tossing experiment. Suppose a coin is tossed once, and let 

X: denote the number of head occurs, then the variable X takes real values say, ‘1’ if  head(H) 

occurs, and ‘0’(say), when tail(T) appears. Symbolically, 

 






appears)T(tailif,

appears)H(headif,
X

0

1

 
 

Here, the sample space(S) = {H, T} ~ {1, 0}, where ‘1’ for Head and ‘0’ for Tail. Thus, X is a 

random variable, i.e. X is a real valued function defined on the sample space S, which takes us 

from the sample space S to a space of real numbers ℜ = {x; x = 0, 1}.  

 

Definition: The random variable(r.v.) is a real valued function defined on sample space(S)of a 

random experiment. 

 

Note: More rigorously, in the probability space, the triplet(S, Ω, P), where S is the sample space, 

Ω is the σ-field of subsets in S, and P is a probability function on Ω, so that the random variable is 

then a function X(w) with domain S and range (-∞, ∞) such that for every real number a, the event 

[w; X(w) ≤ a] Ω, where w indicate the outcome of a random experiment.  

 

6.3 Types of random variable 

“Let S be the sample space associated with a given random experiment. A real valued function 

X(w) defined on S and taking  values in ℜ(-∞, ∞) is called a one dimensional random variable. If 

the function values are ordered pairs of real numbers(i.e., vectors in two space) the function is 

called a two dimensional random variable. In general, an n-dimensional random variable is 

simply a function whose domain in S, and whose range is a collection of n-tuples of real 

numbers(vectors in n-space)”. 

Further we define types of random variables as  
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i. Discrete random variable 

ii. Continuous random variable 

 

6.3.1 Discrete random variable: A random variable if it assumes finite(say’ x: 0, 1, 2,..., n (<∞)) 

or finitely large number(say’ x: 0, 1, 2,...,∞) of distinct or dissimilar values, then it is said to be 

discrete or it is a real valued function defined on a discrete sample space. 

For eg. Number of accidents occurring in a city in a day; number of defective electric lamps in a 

lot of 100 such lamps, number of absentees in a class of 50 students, number of television(TV) 

sets sold at a super market, etc., are discrete. 

 

6.3.2 Continuous random variable: A random variable if it assumes infinitely large number of 

values(both integral and fractional) within some specified domain, then it would be called as 

continuous random variable. For eg., weight, height, age, length, temperature, etc., are 

continuous. Symbolically, {x: a < x ≤ b or a ≤ x ≤ b etc., where a, b ϵ ℜ, real line}, then X is a 

continuous random variable. 

 

6.4 Distribution function(D.F.) or cumulative distribution function of an R.V. 

Let X be random variable. The function F defined for all real values of x by  

,x},x)w(X:w{P)xX(P)x(F   

is called the distribution function (d.f.) or cumulative distribution function of the random variable 

X. 

 

Note 1. If F is the d.f. of one dimensional r.v. X, then i) 0 ≤ F(x) ≤ 1. ii). F(x) ≤ F(y) if x < y. That 

is, all d.f.’s are monotonically non-decreasing and lie between(0, 1). 

Note 2:  























x

-

x

ai

continuous is X, when f(t)dt,

discreteisXwhen,a,)i(p

xXP)x(F  

 

Properties of Distribution Function(d.f.) 

Here we provide the properties of distribution function, which are common to all distribution 

functions. 

i. If f is the d.f. of the r.v. X and if a < b, then P(a < X ≤ b) = F(b) -F(a) 

[Hint: P(a < X ≤ b) + P(X ≤ a ) = P(X ≤ b)]. 

ii. P(a ≤ X ≤ b) = P(X = a) + F(b) – F(a) 

iii. If f is the d.f. of one dimensional r.v. X, then 

0


)x(Flim)(F
x

 and 1


)x(Flim)(F
x

. 

Example 6.1: When a coin is tossed once, the sample space S = {H, T}, and X be defined by 

X(H) = 1 and X(T) = 0. If p assigns equal probability to {H)} and {T}, then P{X = 0} = 1/2 = P{X 

= 1}, and the distribution function is  
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















11

10

00

2
1

xif,

xif,

xif,

)x(F  

Example 6.2: Let X be a continuous r.v. with probability function


 


otherwise,

x,x
)x(f

0

102
,  

Then,     




x

-

x x

2
x

0

t xfor,x |2tdt f(t)dt f(t)dtxXP
0 0

2 102
2

, 

andthedistribution function F is then  

















11

10

00
2

xif,

xif,x

xif,

)x(F  

 

6.5 Probability distribution of a random variable 

Probability distribution of a random variable is defined as a real valued function such that every 

value of X = x is associated with the probability of occurrence of an outcome of a random 

experiment such that the total probability should be equal to 1. 

For eg., when a coin is tossed twice, the sample space S = {HH, HT, TH, TT} contains four 

outcomes. Here, X: denote the number of head occurs, then we have the variable X takes values 

x: 0, 1, 2 such that ‘0’ for “No head = {TT}”, ‘1’ for ‘one head ={HT, TH}’, and ‘2’ for ‘two 

heads = {HH}’, with respective probability 1/4, 1/2 and 1/4. Symbolically, we denote  

X= x:       0  1  2 

P(X = x): 1/4 1/2 1/4 

And an another example is that suppose a dice is rolled once, then X be the number obtained on 

the dice is a random variable(discrete) such that its probability distribution is given by 

X=x:    1  2  3  4  5  6 

P(X=x):1/6 1/6 1/6 1/6 1/6 1/6 

 

6.5.1 Probability mass function(pmf): A probability function P(X = x) of a discrete random 

variable say X is said to be probability mass function(pmf) if  










,...,i;xxif,

xxif,p)xX(P
)x(p

i

iii

210
 

is called the probability mass function of the r.v. X. 

 

Properties of p(x) 

i. p(x) ≥ 0, for all xϵ ,  

ii. 1
x

)x(p , for all xϵ . 
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6.5.2 Discrete distribution function (d.f. or cdf): Let X be a discrete r.v. having the pmf p(x) at 

countable number of points x1, x2,... and number ip ≥ 0; 1
i

ip , such that 



xx:i

i

i

p)x(F , then 

)x(F has a “step function” having jump ip at i , and being constant between each pair of 

integers.              

 

For example: When a coin is tossed thrice, the sample space S = {HHH, HHT, HTH, THH, HTT, 

THT, TTH, TTT}, and X be defined by 

X: denote the number of head appears, and then the probability distribution is 

X: 0 1 2 3 

P(x): 1/8 3/8 3/8 1/8 

And the probability function(pmf) curve is 

p(x) 

1 

 
1/2 

 

0       1       2       3                   x 

and the distribution function is                                          F(x) 


























31

3287

2184

1081

00

xif,

xif,/

xif,/

xif,/

xif,

)x(F ,  and the curve of F(x) is: 

 

        1 

 

 

 

         0      1       2       3                   x 

 

Example 6.3. If 










elsewhere,

,,,,x,
x

)x(p

0

54321
15  

Find i. P{X = 1 or 2}, and ii. P{0.5 <X < 2.5 | X> 1} 

 

Solution: We have, 

i. P{X=1 or 2} = P{X = 1} + P{X = 2} = 15
3

15
2

15
1  = 0.2 

ii. P{0.5 <X< 2.5 | X > 1} = 
1}>P{X

1} > X  2.5) < X < P{(0.5 
 

1}P{X-1

1} > X 2)or1P{(x




  

        = 
7

1

1511

1522









/

/

1}P{X-1

)x(P
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6.5.3 Probability density function(pdf): A probability function f(X = x) of a continuous random 

variable say X, is said to be probability density function(pdf), if it satisfies the properties: 

i. f(x) ≥ 0, for all x ϵ ℜ, and 

ii. 




 1)(1 dx)x(for,x,dx)x(f
x

 

iii. The probability P(A) given by 
A

dx)x(f , is well defined for any event A. 

 

Note: More rigorously, the pdf f(x) of the random 

variable X is defined as 

x

)xxXx(P
lim)x(f
x

X









0
, where x  is the 

small increment in x ; i.e., pdf f(x) of the random 

variable X is a continuous function of x , such that 

f(x)dx represents the probability that X falls in the 

infinitesimal interval (X, X + dx) or f(x)dx 

represents the area bounded by the curve y = f(x). 

 

 

 

 

f(x)dx 
 

y = f(x). 

 

x- dx
2
1   x+ dx

2
1  

 

Remark: When the random variable X is discrete, the probability at a point c, or P(X = c) is not 

zero for some fixed c. However when X is a continuous random variable the probability at 

appoint is always zero, i.e., P(X = c) = 0, for all c. This implies that P(A)=o, does not imply that 

the event A is null or impossible event. The property of continuous r.v., viz.,  

P(X = c) = 0, for all c, leads to the following important result: 

       bXaPbXaPbXaPbXaP  , 

i.e., in the case of continuous r.v., it does not matter whether we include the end points of the 

interval from(a, b), however, this result is not true in general for discrete r.v. 

 

Probability distribution function of a continuous random variable 

Let X be a continuous r.v. having the pdf  f (x), then the function F(x) defined by 

F(x  ) =   




x

-

x,f(t)dtxXP  

is called thedistribution function(df) or the cumulative df of the random variable X. 

Properties of Distribution Function:  

j.  x,)x(F 10 . 

ii. From analysis(Reimann integral), we know that 

0 )x(f)x(F
dx

d
)x(F  

         =>F(x) is non-decreasing function of x 
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iii. 0 









x

xx
dx)x(fdx)x(flim)x(Flim)(F

1 









x

xx
dx)x(fdx)x(flim)x(Flim)(F  

iv. F(x) is right continuous function of x. 

 

Example 6.4: Let X be a continuous r.v. with probability function


 


otherwise,

x,x
)x(f

0

102
,  

Then, the probability distribution function is given by 

    




x

-

x x

2
x

0

t xfor,x |2tdt f(t)dt f(t)dtxXP
0 0

2 102
2

 

And the curve for pdf is given by 

 

f(x) 
2 

 

 

0                1/4             1/2         3/4           1         . . .             x 

 

andthedistribution function F is then                        F(x) 

       1 










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


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xif,x
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        0              1            2   ...          x 

 

6.5.4 Various measures of central tendency, dispersion, skewness and kurtosis in terms of 

random variable  

Let f(x) be the pdf of a continuous random variable X, such that X is defined in (a, b), then we 

have, 

i. Arithmetic mean = mean(X) = 
b

a

dx)x(xf  

ii. Geometric mean(G) is given by log G =  

b

a

dx)x(fxlog  

iii. Harmonic mean(H) is obtained by: 
b

a

dx)x(f
xH

11
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iv. Median(M) is given by solving  

b

M

M

a

dx)x(fdx)x(f
2

1
, as median divides the total 

area in to two equal parts. 

 

v. Mode(Z) is obtained by solving 0 )x(f , and 0 )x(f , provided it lies between [a, 

b], since mode is the value of x ,  for which )x(f is maximum. 

vi. Quartiles( 321 ,,r,Qr  ), Deciles( 921 ,...,,r,Dr  ) and Percentiles( 9921 ,...,,r,Pr  ) are 

obtained by 

4

1
rdx)x(f

rQ

a

 , where 321 ,,r  for quartiles 

10

1
rdx)x(f

rD

a

 , where 921 ...,,,r  for deciles 

And 
100

1
rdx)x(f

rP

a

 , where 9921 ...,,,r  for deciles 

vii. Moments about origin 
r (about origin) = 

b

a

r dx)x(fx ,  

in particular, mean 
b

a

dx)x(xf1  , 
b

a

dx)x(fx2

2 , and  

r (about any point A) =  

b

a

r dx)x(f)Ax(  

r (about mean) =  

b

a

r dx)x(f)meanx(  

viii. Mean deviation(M.D.) about mean 
1  is given by  

M.D.(about mean) =  

b

a

dx)x(f|meanx|  

6.5.5  Important remark:  Above measures can even be applied to discrete random variable 

with pmf p(x), for which, we need to replace integral (∫) sign by summation(Σ) sign over the 

given range of the variable X, in the above formulae i to viii. 

 

Example 6.5: A continuous random variable X has a pdf 


 


elsewhere,

xif,kx
)x(f

0

102

,  

find i. k, ii. mean, iii. median, iv. mode, v. P(X > 1/2), and vi. P(0.25 < X < 0.75). 

 

Solution:  

i. To find k, we have 
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11

1

0

2

1

0

  dxkxdx)x(f 310
3

1
1

3

1

0

31

0

2 







  kk

x
kdxxk  

=>


 


elsewhere,

xif,x
)x(f

0

103 2

 

ii. Arithmetic mean =  

1

0

2

1

0

3 dxxxdx)x(xf 430
4

1
3

4
33

1

0

41

0

3 /
x

dxx 







   

 

iii. To find median, we have 

 

1

0
2

1

M

M

dx)x(fdx)x(f  

Consider,  
2

1
3

2

1

0

2

0

 

MM

dxxdx)x(f  

=>3
313

0

3

0

2 21
2

1

2

1

3
3 /

MM

)/(MM
x

dxx  =0.7937 

or 

    313

1
31

2

1

21
2

1
1

2

1

3

3
3

2

1 /

MMM

/MM
x

dxxdx)x(f   =0.7937 

=> median(M) = 0.7937 

iv. To find Mode(Z), we have  

00630 2  xx)x(
dx

d
)x(f

dx

d
)x(f  

and 06
3

0
2

2

2











dx

)x(d

dx

d
)x(f

dx

d
)x(f , which contradicts that f(x) is maximum.  

Therefore, calculus method fails. Hence, we use graphical method to find mode  

f(x) 
3 

 

 

0               1/4             1/2          3/4           1                        x 

Thus, from the graph it is observed that f(x) attains maximum at x = 1, hence Mode(Z) = 1. 

v. P(X > 1/2) =  878113
1

21

3

1

21

2

1

21

/)/(xdxxdx)x(f
/

//

   

and, vi) P(0.25 < X < 0.75) =  )..(xdxxdx)x(f
.

.

.

.

.

.

33
750

250

3

750

250

2

750

250

2507503    

321340625001562504218750 /...   
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Example 6.6: Find i. k, and ii. compute P(X < 1.25), for x a continuous r.v., with pdf f(x) defined 

by 





















elsewhere,

x,kkx

x,k

x,kx

)x(f

0

323

21

10

 

Solution: i. To determine the value of k, we have  

11

3

2

2

1

1

0

 




dx)x(fdx)x(fdx)x(fdx)x(f  

13

3

2

2

1

1

0

  dx)kkx(kdxkxdx  

13
22

3

2

3

2

2
2

1

1

0

2

 xk
x

kxk
x

k  

123349
2

1201
2

 )(k)(
k

)(k)(
k

 

On simplification, k =1/2 =>





















elsewhere,

x,//x

x,/

x,/x

)x(f

0

32232

2121

102

 

ii.P(X < 1.25) =  


251

1

1

0

251 ..

dx)x(fdx)x(fdx)x(f  

8

3

8

1

4

1

242

1

2

251

1

1

0

2251

1

1

0

251

1

1

0

 
...

xx
dxdx

x
dx)x(fdx)x(f . 

 

6.6 Two dimensional random variables 

Here we deal with two dimensional random variable defined on the same sample space. For 

example, one may be interested in getting the information about height and weight of each 

individual from a certain organisation. To describe such experiments mathematically we 

introduce the study of two random variables. 

 

Definition: Let X and Y be two random variables defined on the same sample space S, then the 

function (X,Y) that assigns a point inℜ2(i.e. ℜ×ℜ), is called a two dimensional random variable. 

 

Note: A two-dimensional r.v. is said to be discrete if it takes at most countable number of 

pointsinℜ2(i.e. ℜ×ℜ). 

Note: Two random variables X and Y are said to be jointly distributed if they are defined on the 

same probability space. 
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6.7 Two dimensional or joint distribution function 

Definition: The distribution function F, of the two dimensional random variable(X, Y) is a real 

valued function, defined for all real x and y by the relation:  

).yY,xX(P)y,x(FXY   

Properties of joint distribution function 

i. .),(F;),x(F)y,(F 10   

ii. If the density function f(x, y) is continuous at(x, y), then )y,x(f
yx

)y,x(F




2

. 

6.8 Marginal and conditional distribution functions 

Here we determine the marginal and conditional distribution functions with respect to joint 

distribution function )y,x(FXY
. 

With the notion of joint distribution function )y,x(FXY
, we obtain the individual distribution 

functions FX(x) and FY(y) called marginal probability functions defined by, 

),x(F)y,x(Flim)Y,xX(P)xX(P)x(F XYXY
y

X 


 

Similarly, 

)y,(F)y,x(Flim)yY,X(P)yY(P)y(F XYXY
x

Y 


 

Where, )x(FX
 and )y(FY

are the marginal distribution functions of X and Y respectively. 

Note: If (X, Y) discrete then  

 
x

Y

y

X )yY,xX(P)y(Fand)yY,xX(P)x(F  

And when (X, Y) continuous then 

  






































y

XYY

x

XYX dydx)y,x(f)y(Fanddxdy)y,x(f)x(F  

With the notion of joint distribution function )y,x(FXY
, we obtain the distribution functions 

FX|Y(x|y) and FY|X(y|x) called conditional distribution functions for given values of a variable 

defined by, 

FX|Y(x|y) = P(X ≤ x, Y = y), and FY|X(y|x) = P(Y ≤ y, X = x) 

WhereFX|Y(x|y) is called conditional distribution of X, for given values of Y, and FY|X(y|x) is called 

conditional distribution of Y, for given values of X. 

 

6.9 Two dimensional or Joint probability mass function 

If (X, Y) is a two dimensional discrete random variable, then the joint discrete probability 

function of X, Y also called the joint probability mass function of X, Y denoted by  pxy(x, y) is 

defined as 



 


elsewhere,

)Y,X(of)y,x(ofvalueafor),yY,xX(P
)y,x(p

jiji

jixy
0

 

such that, )y,x(,)y,x(p ji

x y

jixy  1 and 0)y,x(p jixy . 

6.10 Two dimensional or Joint probability density function 
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If (X, Y) is a two dimensional continuous random variable, then the joint discrete probability 

function of X, Y also called the joint probability density function of X, Y denoted by  fxy(x, y) is 

defined as 



 


elsewhere,

y;xfor),yY,xX(P
)y,x(f

jiji

jixy
0

 

such that,  








jixy y;x,dxdy)y,x(f 1 , and y,x,)y,x(f xy  0 . 

 

6.11 Marginal probability functions 

Here we try to find the distribution of a variable i.e., either X or Y, alone using the joint the joint 

probability functions. 

 

Definition: Let(X, Y) be a two dimensional random variable, with joint probability function of X, 

Y defined by pxy(x, y), if X and Y are discrete, and fxy(x, y) for X and Y are continuous, then the 

marginal probability function of X and Y are given by 

i. .s'v.rdiscreteareYandXfor,

)y,x(,)y,x(p)y(p

and

y,x,)y,x(p)x(p

ji

x

jixyy

ji

y

jixyx





















 

ii. 
.s'v.rcontinuous

areYandXfor
,

,x;y,dx)y,x(fdx)y,x(f)y(f

and

y;x,dy)y,x(fdy)y,x(f)x(f

xy

x

y

ixy

y

x






























 

6.12 Conditional Probability functions 

Here wetry to find the distribution of a variable i.e., either X or Y, alone when the distribution of 

the other variable is known already, and also with the help of the joint the joint probability 

functions. 

Definition: Let(X, Y) be a two dimensional random variable, with joint probability function of X, 

Y defined by pxy(x, y), if X and Y are discrete, and fxy(x, y) for X and Y are continuous, then  

a) the conditional probability function of X for given value of Y=y is given by 

yanyfor,x,
)yY(p

)y,x(p
)y|x(p

xy



  

           the conditional probability function of Y for given value of X=x is given by 

xanyfor,y,
)xX(p

)y,x(p
)x|y(p

xy



 , 

for X and Y are discrete r.v’s. 
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b) Similarly, when X and Y are continuous random variables, then the conditional 

probability function of X for given value of Y=y is given by 

 y;x,
)y(f

)y,x(f
)y|x(f i

y

xy
  

              and the conditional probability function of Y for given value of X=x is given by 

x;y,
)x(f

)y,x(f
)x|y(f

x

xy
  

6.14 Independence of random variables: Let (X, Y) be a two dimensional random variable with 

joint pdf )y,x(f xy . Then X and Y are said to be independent if  

    )y(f)x(f)y,x(f yxxy  . 

 

Example 6.7. The joint probability mass function of the two discrete random variables X and Y is 

given by 

210210
27

2
,,y;,,x,

yx
)y,x(p 


  

Obtain i. marginal probability function of X and Y;    ii. Conditional distribution function of X 

given Y = 1 and Y given X = 2. iii. P(1 ≤ X ≤ 2) , P(|X|<1) 

Solution: i.To obtain marginal probability function of X and Y, we have 

  .,,x,
xx

)x()x()x(
yx

y,x,)y,x(p)x(p

y

ji

y

jixyx

210
9

12

27

36
221202

27

1

27

22

0




















 

  .,,y,
yy

)y()y()y(
yx

y,)y,x(p)y(p

x

j

x

jixyy

210
9

2

27

36
22120

27

1

27

22

0




















 

ii. Now to find the conditional distribution of X given Y = 1, we have 

210
9

12

12

12

3

1

2

2

3

1

1

19
2

27
2

,,x,
xx

y

yx

x,
)Y(p

)y,x(p
)y|x(p

y

)y(

)yx(

xy

































 

And, to find the conditional distribution of Y given X = 2, we have 

210
15

4

5

4

3

1

122

22

3

1

2

29
12

27
2

,,y,
yyy

y,
)X(p

)y,x(p
)x|y(p

x
)x(

)yx(

xy






























 

iii. P(1 ≤ X ≤ 2) = P(X = 1) + P(X = 2) = 
9

8

9

122

9

112






, 
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and,    P(|X|<1) = P(-1<X< 1) = P(X = 0) =1/9. 

 

Example 6.8. The joint probability mass function of the two discrete random variables X and Y is 

given by 

.,y;,,,x,
yx

)y,x(p 103210
32

2




  

Obtain i. marginal probability function of X and Y;    ii. Conditional distribution function of X 

given Y = 1 and Y given X = 2. (left as exercise)  

 

Example 6.9: If X and Y are two continuous random variables having joint density function: 













elsewhere,

y,x,
yx

)y,x(f

0

4220
8

6

 

Obtain i. marginal probability function of X and Y;    ii. Conditional distribution function of X 

given Y=1 and Y given X=2 iii. Also, find P[X<1 Y<1], P[X+Y<3] and P[X<1|Y<3] 

Solution: i.To find themarginal probability function of X and Y, we have 

     20
4

3

8

62
22128424

8

1

2
6

8

1

8

6
4

2

24

2




















 

x,
xx

xx

y
xyydy

yx
dy)y,x(f)x(f

y

x

 

and, 

  42
4

5

8

210
2212

8

1

2
6

8

1

8

6
2

0

22

0




















 

x,
yy

y

yx
x

xdx
yx

dx)y,x(f)y(f
x

y

 

 

ii. Conditional distribution function of X given Y =1 is given by 

y;x,
)y(f

)y,x(f
)y|x(f i

y

xy
  

20
8

5

52

6

4
5

8
6

1

















xfor,
x

)y(

yx

)y(

)yx(

y

 

and, conditional distribution function of Y given X=2. 

x;y,
)x(f

)y,x(f
)x|y(f

x

xy
  

42
2

4

32

6

4
3

8
6

2

















yfor,
y

)x(

yx

)x(

)yx(

x
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iii. a.  P[X<1 Y<3] =
8

3

8

6
1

0

3

2




    dxdy
yx

dxdy)y,x(f
x y

. 

b.  P[X+Y<3] = 
24

5

8

6
1

0

3

2




 


dxdy
yx

x

 

c.  P[X<1|Y<3] = 
5

3

85

8
3

3

31






/)Y(P

)YX(P
,     {⸪  




3

2

85
4

5
3 /dy

y
)Y(P }. 

 

Example 6.10. The joint pdf of a two dimensional r.v. (X, Y) is defined by  



 


elsewhere,

xy,xif,
)y,x(f

0

0102
 

Find i. marginal density function of X and Y ,  ii. conditional density of Y given X=x, and  

iii. verify the independence of X and Y. 

Solution: i.To find the marginal density function of X and Y, we have 

1022
0

  x,xdydy)y,x(f)x(f

x

y

x
 

and 

10122

1

  y),y(dxdx)y,x(f)y(f
yx

y
 

ii. To find conditional density of Y given X=x, we have 

xy,
xx)x(f

)y,x(f
)x|y(f

x

xy
 0

1

2

2
 

iii. To verify the independence of X and Y, we have 

)y,x(f)y(x)y(f)x(f yx  14 =>X and Y are not independent. 

 

Exercise 

1. Verify whether the following  function is a probability mass function? If so, find  

P(X > 0.25), and P(0.25 < X ≤ 0.75). 

2
1

4
1

16
3

16
1 ,,,x,x)x(f 

 
Verify whether the function 10  x,x)x(f is a probability density function? If yes, 

find P(X > 0.25), and P(0.2 < X ≤ 0.5). 

2. Let X be an rv, with pdf 10  x,cx)x(f  find c. 

3. Let X be an rv, with pdf 102  x,cx)x(f  find c. 

4. The joint pdf of abivarate rv (X,Y) is 10104  y;x,xy)y,x(f ,find the marginal 

probability function of X and Y. Also, find the conditional probability of X given Y=y 

and X=x.  
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5. The joint pdf of abivarate rv (X,Y) is 5410  y;x,cxy)y,x(f ,find c, then find 

marginal probability function of X and Y. Also, find the conditional probability of X 

given Y=y and X=x.  
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UNIT 7 

MATHEMATICAL EXPECTATION OF A RANDOM VARIABLE 

7.1 Objective. Here we study the expectation, variance and other moments in terms of random 

variables. Also, study the expectation of sum of two or more random variables, difference of 

random variables and other properties. 

7.2 Introduction 

We may be interested in talking about a vale ‘average’ i.e., average income, average expenditure, 

average profit, average winnings etc., in all ‘the value average’ is a random phenomenon which is 

also termed as expected value or mathematical expectation. Here we study this concept in detail.  

 

Definition: Let X be a discrete random variable with probability mass function p(x), then the 

mathematical expectation (expected value) of X is given by 

.x),x(xp)X(E
x

   

Let X be a continuous random variable with probability density function f(x), then the 

mathematical expectation (expected value) of X is given by 






 ,dx)x(xf)X(E  

Provided, right hand integral is absolutely convergent, that is, 








 dx)x(f|x|dx|)x(xf| , 

i.e., converges to a finite value. 

 

7.3 Variance of a random variable: The variance of a random variable say X, is given by  

   222
)X(E)X(E)X(EXE)X(V  . 

 

Note. Variance of an r.v. can also be denoted as Var(X) or by Greek letter σ2. 

 

7.4 Expected value of function of a random variable 

Consider a r.v. X, with pdf(or pmf) f(x) and distribution function F(x). Let g(.) be a function such 

that g(X) is a r.v. and E[g(x)] exists(i.e., defined), then, 


















x

discreteisXwhen),x(f)x(g

continuousisXwhen,dx)x(f)x(g
)X(g(E  

Note. In particular,when X is a continuous r.v., and if g(X) = 
rX , r> 0, then 






 originaboutmomentr,dx)x(fx)X(E thrr 

 
 

7.5 Some properties Expectation 
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Property 1. Expectation of a constant is constant. i.e., E(a) = a, a being the constant. 

Proof: By definition of expectation of a r.v., 


x

)x(xp)X(E .  

Now letting X = a, we have 

aa)x(pa)x(ap)a(E
xx

  1 .  ( x,)x(p
x

 1 ) 

Note. Proof can be extended to continuous r.v., provided E(X) exists. 

 

Property 2. E(aX) = aE(X) 

Proof: It’s trivial by(i), provided E(X) exists. 

 

Property 3. E(aX+b) = aE(X)+ b. 

Proof: It’s trivial by(i), provided E(X) exists. 

 

Property 4. Additive Property(Addition theorem of Expectation) 

Statement. If X and Y are the two r.v’s, then E(X+Y) = E(X) + E(Y), provided all expectations 

exist. 

Proof: Let X and Y be two continuous r.v.’s, with joint pdf f(x, y) and marginal pdf’s f(x) and f(y), 

respectively. Then by definition, 






 ,dx)x(xf)X(E   and 




 dy)y(yf)Y(E    (i) 

And,  








 dxdy)y,x(f)yx()YX(E  

  
















 dxdy)y,x(yfdxdy)y,x(xf  

dydx)y,x(fydxdy)y,x(fx   














 
















  

dy)y(yfdx)x(xf 








 ,  (   by definition of marginal pdf.) 

Using (i), we have 

)Y(E)X(E)YX(E   

 

Note 1. Above result can be extended even for discrete r.v.’s just by replacing integral(∫) sign by 

summation(Σ) sign. 

[Hint.  
x

x),x(xp)X(E ,  
y

y),y(yp)Y(E ,  
x y

)y,x(p)yx()YX(E ] 

Note 2. Above result can be extended for n r.v.’s as given below. 

7.5.1 Generalised Addition theorem of Expectation 
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Statement. Let X1, X2, . . ., Xn be n random variables, then mathematical expectation of sum of 

these n r.v.’s is equal to sum of their expectations provided all expectations exist. Symbolically, 

)X(E...)X(E)X(E)X...XX(E nn  2121 ,  

Or    









 n

i

i

n

i

i )X(EXE
11

     (1) 

provided all )X(E i exists. 

Proof: Consider two random variables, X1 and X2, we have 

)X(E)X(E)XX(E 2121  ,    (2) 

Implies result (1) is true for n = 2. 

Suppose, result(1) is true for n = k, then for n = k+1, we have 

 1

11

1

1

1





































 k

k

i

i

k

i

ki

k

i

i XEXEXXEXE ,  [⸪by (2)] 

 1

1





 k

k

i

i XE)X(E  







1

1

k

i

i )X(E  ,  

implies, result (1) is true for n = k+1. Hence, if (1) is true for n = k+1, it is also true for n = k. 

Thus, by mathematical induction,  result (1) is true for all positive integer values of n. 

 

Property 5. Multiplicative property(Multiplication theorem of Expectation) 

Statement: If X and Y are two independent r.v’s, then E(XY) = E(X) E(Y), provided all 

expectations exist. 

Proof: Let X and Y be two continuous independent r.v.’s, with joint pdf f(x, y) and marginal pdf’s 

f(x) and f(y), respectively. Then by definition, 






 ,dx)x(xf)X(E   and 




 dy)y(yf)Y(E      (i) 

And,  








 dxdy)y,x(fxy)XY(E ,  

 








 dxdy)y(f)x(fxy ,   [X and Y are independent, f(x, y) = f(x) f(y)] 




























 









dy)y(yfdx)x(xf  

Using (i), we have 

  )Y(E)X(E)XY(E   

Hence proved. 

Note. Above result can be extended for n independent r.v.’s 
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7.5.2 Generalisation Multiplication theorem of Expectation of n r.v.’s 

Statement. Let X1, X2, . . ., Xn be n independent random variables, then mathematical expectation 

of product of these n r.v.’s is equal to product of their expectations, provided all expectations 

exist. Symbolically, 





n

i

inn )X(E)X(E)X(E)X(E)XXX(E
1

2121 , 

provided all )X(E i exists.  

[Hint. Proof By mathematical induction property, result holds]. 

 

Property 6. Expectation of a Linear combination of Random Variables 

Let X1, X2, . . ., Xn be any n random variables and if a1, a2, . . ., an are any n constantans, then  











 n

i

ii

n

i

ii )X(EaXaE
11

,  

provided all the expectation exist. 

[*Proof is trivial from property 2, 4, and generalised addition theorem] 

 

7.6 Properties of variance 

Property 1. Variance of a constant is zero, i.e., V(a) = 0, a being any constant. 

Proof: By definition, 

V(X) = E(X2) – {E(X)}2 

Letting, X = a, then  

V(a) = E(a2) - {E(a)}2 = a2 - {a}2 = 0. 

 

Propert 2. V(aX) = a V(X) 

By definition, 

V(aX) = E(a2X2) - {E(aX)}2 

            = a2E(X2) - {aE(X)}2 

           = a2[ E(X2) - {E(X)}2] = a2V(X). 

 

Property 3. V(AX + b) = a2V(X) 

Proof is obvious by property 1 and 2. 

 

7.6.1 Covariance 

If X and Y are two random variables, then the covariance between them is defined as 

Cov(X, Y) = E[{X - E(X)}{Y - E(Y)}] = E(XY) – E(X)E(Y) 

If X and Y are independent then E(XY) = E(X)E(Y), implies Cov(X, Y) = 0. 

 

7.6.2 Properties of Covariance 

i. Cov(aX, bY) = abcov(X,Y) 

ii. Cov(X+a, Y+b) = Cov(X,Y) 
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iii. Cov xy

yxyx

r)Y,X(Cov
YY

,
XX

Cov 












 



1
, the correlation coefficient. 

iv. Cov(aX+b, cY+d) = ac Cov(X,Y) 

v. Cov(aX+bY, cX+dY) = acσx
2 + bdσy

2+(ad+bc)cov(X,Y) 

 

7.6.3. Variance of a linear combination of r.v.’s 

Let X1, X2, . . ., Xn be any n random variables and if a1, a2, . . ., an are any n constantans, then  

)X,Xcov(aa)X(VaXaV ji

ji

n

i

n

j

ji

n

i

ii

n

i

ii



 

 








1 111

2  

Proof. Let  nn Xa...XaXaU  2211  , then 

)X(Ea...)X(Ea)X(Ea)U(E nn 2211  

][][][ 222111 )X(EXa...)X(EXa)X(EXa)U(EU nnn   

Squaring and taking expectations on both sides, we get 

 

 )}X(EX)}{X(EX{Eaa

)X(EXa...)X(EXa)X(EXa)}U(EU{E

jjii

ji

n

i

n

j

ji

nnn







 


1 1

222

212

2

2

2

11

2

1

2

2

]E[]E[]E[

  ji

ji

n

i

n

j

jinn X,Xcovaa)X(Va)...X(Va)X(Va)U(V



 


1 1

2

2

2

21

2

1 2  

 )X,Xcov(aa)X(VaXaV ji

ji

n

i

n

j

ji

n

i

ii

n

i

ii



 

 








1 11

2

1

2  

 

Remark: In the above result, if all ,ai 1 then 

  

ji

n

i

n

j

ji

n

i

i

n

i

i )X,Xcov()X(VXV



 

 








1 111

2  

In particular, if n=2, and let 11 21  a,a , then 

  )X,Xcov()X(V)X(VXXV 212121 2  

let 11 21  a,a , then 

  )X,Xcov()X(V)X(VXXV 212121 2  

Thus we have, 

  )X,Xcov()X(V)X(VXXV 212121 2  

If X and Y are independent, then ,)X,Xcov( 021   which implies 

  )X(V)X(VXXV 2121    

Example 7.6. Let X be a random variable with probability distribution defined by 
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x:  -3  6 9 

p(x): 1/6 1/2 1/3 

Determine i. E(X), ii. E(3X),  iii. E(-2X+5),    vi. V(X),  v. V(2X+3). 

Solution. For the above problem, we have 

i. E(X) = 



n

i

/)x(xp
1

211 . 

ii. E(3X) = 3E(X) = 3(11/2) = 33/2. 

iii. E(-2X+5) = -2E(X) + 5 = -6. 

iv. V(X) = E(X2) – {E(X)}2 =   465211
22 //)x(px

x

 . 

v. V(2X+3) = 22 V(X) = 4(65/4) = 65. 

 

Example 7.7. A continuous random variable X has a pdf: 



 


elsewhere,

xif,x
)x(f

0

103 2

,   find i. E(X), ii. E(X2 + 2) iii. V(X) 

Solution. By definition-  

i. 433

1

0

3

1

0

/dxxdx)x(xf)X(E   . 

ii. 533

1

0

4

1

0

22 /dxxdx)x(fx)X(E   ,  

       => 21325322 //)X(E  . 

iii.   80316953
22 /)/()/()X(E)X(E)X(V  . 

 

7.7. Cauchy Schwartz inequality: If X and Y are random variables taking real values then 
222 )Y(E)X(E)}XY(E{   

[see proof in Fund. Math. Stat. by S.C. Guptha and V.K. Kapoor, P-6.22] 

 

Note: In particular, by letting X = |X - E(X)| = |X - μx|, and Y =1, in the above inequality, we get 

  22

xx XEXE    

=>(mean deviation about mean)2 ≤ Variance(X) 

=>   M.D. ≤ S.D, where S.D. denote the standard deviation. 

 

7.8. Jenson’s inequality: If g is a continuous and convex function on the interval I, and X is a 

random variable whose values are in I with probability 1, then 

)},X(E{g))X(g(E    provided the expectation exist. 

[see proof in Fund. Math. Stat. by S.C. Guptha and V.K. Kapoor, P-6.23] 

Cor. If g is a continuous and convex function on the interval I, then 

)},X(E{g))X(g(E    provided the expectation exist. 
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[see proof in Fund. Math. Stat. by S.C. Guptha and V.K. Kapoor, P-6.23] 

Remark 1. If E(X2) exist then ,)}X(E{)X(E 22   

Since g(X) = X2, is convex function of X as .)X(g 02   

2. If X> 0, i.e., X assumes only positive values and E(X) and E(1/X) exist then 

,
)X(E

)
X

(E
11

  

Since g(X)= 1/X, is convex function of X as .Xfor,
X

)X(g 00
2

3
  

 

Example 7.11 For any two variates X and Y, show that 

])}Y(E{)}X(E[{})YX(E{ /// 212212212       (*) 

Solution. Squaring both sides of(*), we have 

)Y(E)X(E)Y(E)X(E})YX(E{ 22222 2  

=> )Y(E)X(E)XY(E 22  

=> )Y(E)X(E)}XY(E{ 222  , 

which is a Cauchy –Schwartz inequality. 

 

7.9. Mathematical Expectation of a two dimensional random variable 

The mathematical expectation of a function g(x, y) of two –dimensional r.v. (X, Y) with pdf f(x,y) 

is given by 

E[g(X,Y)] =  








dxdy)y,x(f)y,x(g , if X and Y are continuous 

                 = }yYxX{P)y,x(g
x y

 , if X and Y are discrete 

provided the expectation exist. 

Imp. Note: In particular, if g(x, y) = XY, then 

E[XY] =  








dxdy)y,x(xyf , if X and Y are continuous 

            = }yYxX{Pxy
x y

 , if X and Y are discrete. 

7.9.1 Conditional Expectation and Conditional Variance 

The conditional expectation of X for given Y=y is given by 

E[X|Y= y] = 
)y(f

dx)y,x(f(x


 , if X and Y are continuous 

                =  
xx )y(p

)y,x(p
x)yY|xX(xP , if X and Y are discrete. 

provided expectation exist. 
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E[Y|X= x] = 
)x(f

dy)y,x(yf


 , if X and Y are continuous 

                =  
yy )x(p

)y,x(p
y)xX|yY(yP , if X and Y are discrete. 

provided expectation exist. 

 

7.9.2 Conditional Variance 

The conditional variance of X for given Y= y is given by 
22 )}yY|X(E{}yY|X{E]yY|X[V  . 

Similarly, conditional Variance of Y for given X= x, is given by 
22 )}xX|Y(E{}xX|Y{E]xX|Y[V  . 

 

Example 8.12. Two dimensional random variable (X, Y) with joint pdf 



 


elsewhere,

y,xif,yx
)y,x(f

0

10102
 

Find i. marginal density of X and Y ii. Conditional density of X given Y=y and Y for given X=x; 

 iii. E(X) iv.E(X|Y=1/2)  v. E(Y|X=3/4)  vi.V(Y|X=3/4). 

 

Solution. i. marginal density of X: 

10
2

3
2

1

0

1

0

  x,xdy)yx(dy)y,x(f)x(f  

And, 10
2

3
2

1

0

1

0

  y,ydx)yx(dx)y,x(f)y(f . 

ii. Conditional density of X given Y=y is 

10
23

2





 )y,x(for,

y)/(

yx

)y(f

)y,x(f
)y|x(f  

And, 

10
23

2





 )y,x(for,

x)/(

yx

)x(f

)y,x(f
)x|y(f  

iii. 
12

5

2

3
1

0

1

0

  dx)x(xdx)x(xf)X(E  

iv.E(Y|X=3/4) = 187
43

432

2

3

2

1

0

1

0 /
/

dy)y)/((y

x

dy)yx(y

)x(f

dy)y,x(yf
















  

vi.V(Y|X=3/4) = 324234343 22 /)}/X|Y(E{}/X|Y{E   
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(hint 92

2

2 /
)x(f

dy)y,x(fy

)xX|Y{E 



 ) 

 

7.10  Moment Generating Function(MGF): Let X be a random variable, with probability 

function f(x) , then the moment generation function[ Mx(t )] of  X, is given by 



















x

tX

tX

tX

x

.v.rdiscreteaisXwhen),x(fe

.v.rcontinuousaisXwhen,dx)x(fe
)e(E)t(M  

The summation or summation being extended to the entire range of x, ‘t’, being the real value 

parameter and it’s being assumed that the right hand side of )t(M x  is absolutely convergent  for 

some h > 0, such that – h < t < h.  

 

Properties of MGF 

a. ,...,,r,|)t(M
dt

d
rtxr

r

210    

In particular when r = 1, then  )X(E,|)t(M
dt

d
tx  10  , the mean of the r.v. X 

When  r = 2, then )X(E|)t(M
dt

d
tx

2

202

2

   

Thus, variance V(X) = 2

2

12

2

002

2

 







  )(|)t(M

dt

d
|)t(M

dt

d
txtx  

b. )ct(M)t(M xcx  , c being a constant 

c. Let U = (X-a)/ h, where a and h are constants, h ≠ 0,  then 
  )h/t(MeEe)t(M X

h/ath/aX

U

   

d. Let X1, X2,..., Xn be n random variables then the  MGF of sum Y = 


n

i

iX
1

, i = 1,2,..., n is 

given by 














 

n

i

XXXX

tXntXtX
Xt

tY

Y

)t(M)t(M)t(M)t(M

EeEeEeEeEe)t(M

in

n

i

i

1

2

21

11

 

 

Exercise 

1. Verify whether the following  function is a probability mass function? If so, find  

mean and variance. Also obtain the MGF. 

2
1

4
1

16
3

16
1 ,,,x,x)x(f 
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2. Verify whether the function 10  x,x)x(f is a probability density function? If yes, 

find MGF and hence determine mean and variance from it. 

3. Let X be an rv, with pdf 102  x,x)x(f  find E(X), V(X), and E(X+2) 

4. Let X be an rv, with pdf 103 2  x,x)x(f  find E(X), V(2X), and E(3X-2). Also, find 

MGF. 

5. The joint pdf of abivarate rv (X,Y) is 10104  y;x,xy)y,x(f ,find E(X|Y=1/2) 

6. The joint pdf of abivarate rv (X,Y) is 541094  y;x,/xy)y,x(f ,find 

E(Y|X=1/4), and V(Y|X=1/4). 
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UNIT 8 

CENTRAL LIMIT THEOREM 

8.1 Objective: Here our aim is to find the approximate distribution of the sum of random 

variables when sample size n(n  ) is large. 

8.2 Introduction 

It is one of the most important results in the theory of probability. It states that under certain very 

general conditions, the sum(Sn, say) of a large number of n (n  ) random variables is 

approximately distributed as normal. Note that Xi’s can be either discrete or continuous or mixed 

random variables. That is CLT states that the distribution or the CDF (cumulative distribution 

function) of the sum(Sn, say) converges in distribution to the normal random variable when n is 

very large. 

Here, we confined to state the statements of few theorems only. 

 

8.3 Central Limit Theorem: Here we state central limit theorem for independent and 

i.i.d.(independent and identically distributed) random variables. 

 

8.3.1 CLT for independent r.v.’s [Laplace - Liapounoff ]: Let X1, X2, ..., Xn be n independent 

random variables with E(Xi) = μi and V(Xi) = σi
2, then the sum Sn=ΣXi is asymptotically normal 

with mean μ = 


n

i

i

1

 and σ2 = 


n

i

i

1

2 . 

This theorem was first stated by Laplace(1812) and rigorous proof under fairly general conditions 

was given by Liapounoff(1901). 

 

8.3.2 CLT for independent and identically distributed(iid) r.v.’s [ Lindeberg-Levy- 

Theorem ]: 

Let X1, X2, ..., Xn be n independent and identically distributed(i.i.d.) random variables with E(Xi) 

= μ1 and V(Xi) = σ1
2 , then the sum Sn = ΣXi  is asymptotically normal with mean μ = nμ1 

and variance σ2 = 
2

1n . 

 

8.3.3 CLT for iid r.v.’s [ De-Moivre’s Laplace- Theorem ].  

If   







pqyprobabilitwith,

pyprobabilitwith,
X i

10

1
 

 

Then, the distribution of the random variable Sn = X1 + X2+. . .+ Xn= ΣXi  is asymptotically 

normal as n  . 

Proof: Since Xi ‘s are distributed as Bernoulli r.v.’s, we have by definition of MGF, 

)peq()e(E)t(M ttx

X i
      (1) 

Then the sum Sn = X1 + X2+. . .+ Xn= ΣXi , is distributed as binomial (n, p). Therefore, 
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nt
n

i

X

Xtts

S )peq()t(M)e(E)e(E)t(M
i

n

i

i
n

n



 





1

1

  (2) 

by uniqueness theorem of mgf’s . 

Therefore, E(Sn) = np = μ(say),  and V(Sn)=npq =σ2, (say) 

Let 
npq

npS

)S(Var

)S(ES
Z n

n

nn
n





 , then 

 

 nnpq/tnpq/npt

S

/t

t
S

tZ

Z

peqe)/t(Me

)e(E)e(E)t(M

n

n

n

n














 







 

  
n

/ )n(O
n

t








  23

2

2
1  

Where, )n(O / 23
 denote the terms containing 23 /n and higher powers of n in the denominator. 

Then as n  , we get 

2
2

23
2

2

2
1

2
1 /t

nn

/

Z e
n

t
lim)n(O

n

t
lim)t(Mlim 























  n n n

,  

which is the MGF of a standard normal variate. Hence by uniqueness theorem of mgf’s, 

npq

npS
Z n

n


 , is asymptotically N(0, 1). Which implies, the sum Sn = X1 + X2+. . .+ Xn= ΣXi  is 

asymptotically normal N(μ = np , σ2 = npq).  

 

Example 2. Let X1, X2, ..., Xn be i.i.d. P(λ) rv’s. Show that the sum 



n

i

in XS
1

 is distributed 

asymptotically normal. 

Solution: Given Xi ~ P(λ), then 



n

i

in XS
1

 ~ P(nλ = m, say) => E nS = m and V( nS ) = m 

Let 
m

mS

)S(Var

)S(ES
Z n

n

nn
n





 , then 

Then by definition of MGF, we have 

 

 1

1












 







m/t

m/t

n

n

n

n

emmt

emm/mt

S

/t

t
S

tZ

Z

ee

ee)/t(Me

)e(E)e(E)t(M







 

 Taking log on both sides we get 

log )t(M
nZ = mt  +  1m/tem  
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        = mt + 












  )m(O

m

t

m

t
m / 23

2

2
 

Where, )m(O / 23
 denote the terms containing 23 /m and higher powers of n or m in the 

denominator. Then as n  <=>m  , we get 

2
2

23
2

2

22

/t/

Z e
t

lim)m(O
t

lim)t(Mlim 






















  m m m

,  

which is the MGF of a standard normal variate. Hence by uniqueness theorem of mgf’s, 

m

mS
Z n

n


 , is asymptotically N(0, 1). Which implies, the sum Sn = X1 + X2+. . .+ Xn= ΣXi  is 

asymptotically normal N(μ = m , σ2 = m).  

 

Note: The important applications of central limit theorem in real life are 

a. laboratory measurement errors are generally modelled by normal random variable 

b. In communication and signal processing, Gaussian (normal) distribution is frequently 

used to model Gaussian noise(error). 

c. In finance, the percentage changes in the prices of some assets are sometimes 

modelled by normal distribution 

 

8.4 Some Practical Examples 

Example. A bank teller serves customer standing in the queue one by one. Suppose that the 

service time Xi, for customer i has mean E(Xi) = 2 minutes, and V(Xi) =1 minute2, assume that 

the different bank customers are independent . Let Y be the total time the bank teller spends 

servicing 50 customers. find P[ 90 <Y< 110 ].  

Solution. Let Y be the total time the bank teller spends servicing 50 customers 

 Then Y = X1+ X2+ ....+Xn 

Where n=50, E(Xi) = μ = 2, V(Xi) =1= σ2, for all i = 1,2,...,n 

Therefore, E(Y) = nμ = 50x2 =100, V(Y) = nσ2=50x1=50 

Let ),(N~
YY

Z 10
50

100







  

Now, to find  i. P[ 90 <Y< 110 ] 

We have 






 


















 11090
11090

Y
P]Y[P  

    






 





50

100110

50

10090
ZP  

 
841400.9207)-(1-0.9207

411192070411411411411

.

).(.).().(.Z.P



 ][ 
 

 

Important Remark: Continuity Correction - In the above problem, it is noticed that the 

approximation is not so good. Part of the error is due to the fact that Y is a discrete random 
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variable, and we have used continuous distribution to determine ]Y[P 10090  . Here we use 

better approximation called continuous correction. Since Y can take integer values only, we write 








 


















 5110589
510058910090

.Y.
P].Y.[P]Y[P  

    






 





50

1005110

50

100589 .
Z

.
P  

 
861200.9306)-(1-0.9306

411193060481481481481

.

).(.).().(.Z.P



 ][ 
 

It indicates that the continuous correction will significantly improve (here, 2% increase) the 

probability of occurrence. So, continuity correction to be useful especially when Bernoulli or 

binomial distribution is used, that to find the probability of occurrence between any two values. 

 

Example. In a communication system each data consists of 1000 bits. Due to the noise, each bit 

may be received in error with probability 0.1. It is assumed bit errors occur independently. Find 

the probability that there are more than 120 errors in a certain data packet. 

 

Solution. Let Xi be an indicator random variable for the ith bit in the packet.  

That is, 






otherwise0

errorinreceivedisbititheif1 th

,

,
X i  

Then Xi ~ Bernoulli (1, p = 0.1), where Xi’s are iid. 

Let Y be the total number of bit errors in the packet. 

Then Y = X1+ X2+ ....+Xn 

where, n =1000, E(Xi) = p = μ = 0.1, V(Xi) = pq = σ2= 0.09, for all i = 1,2,...,n 

Therefore, E(Y) = nμ = 1000x0.1=100, V(Y) = nσ2=npq=1000x0.1x0.9=90 

Let ),(N~
YY

Z 10
90

100







  

Now, to find  i. P[ Y>120 ] 

We have 






 











 120
120

Y
P]Y[P  

   






 


90

100120
ZP  

  017409826011121112 ..).(.ZP    

 

Questions 

1. The approximate distribution of the sum of random variables for large n is 

a.Normal       b. standard normal     c. binomial      d. Poisson  

2. In a communication system each data consists of 1000 bits. Due to the noise, each bit may be 

received in error with probability 0.01. It is assumed bit errors occur independently. Find the 

probability that there are more than 8 errors in a certain data packet. 
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3. In a production system each batch consists of 10000 units. Due to the disturbance in electricity 

or by mishandling, each batch may be received defectives with probability 0.2. It is assumed 

batch errors occur independently. Find the probability that there are more than 5 defectives in a 

certain batch box. 
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BLOCK –III 

(PROBABILITY & SAMPLING DISTRIBUTIONS AND ESTIMATION) 

 

 

UNIT 9: STANDARAD DISCRETE PROBABILITY DISTRIBUTIONS 

 

UNIT 10: STANDARAD CONTINUOUS PROBABILITY DISTRIBUTIONS 

 

UNIT 11: SAMPLING DISTRIBUTIONS 

 

UNIT 12: POINT AND INTERVAL ESTIMATION 
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UNIT 9 

STANDARAD DISCRETE PROBABILITY DISTRIBUTIONS 

9.1 Objectives: 

After studying this chapter, we are able to know the probability mass functions of some standard 

discrete distributions and some features, moment generating functions and examples over various 

discrete distributions. Also this will help us to learn about the possible applications of these 

distributions in the analysis of data. 

 

9.2 Introduction: 

In this chapter we will study some probability distribution that figures most useful in statistical 

theory and application. The purpose of this chapter is to show the types of situation in which 

these distribution can be applied. Some of the standard univariate discrete distributions are 

uniform, Bernoulli, binomial, Poisson, negative binomial, geometric and hyper geometric 

distribution. 

 

9.3 Bernoulli distribution: 

Bernoulli distribution was discovered by James Bernoulli. This is a discrete probability 

distribution. It is a distribution of number of successes on a single Bernoulli trial. If a trial results 

in to success or failure with the probability of success remains constant throughout an experiment 

when it is repeated for any number of times is called Bernoulli experiment (or trial). If for this 

experiment, a random variable X is defined such that it takes value 1 when success occurs and 0 if 

failure occurs, then X follows Bernoulli distribution with parameter ‘p’. i.e., X~B(1, p). 

The Bernoulli distribution with parameter p can be written as follows: 

X 0 1 

P(x) 𝑝0𝑞1−0 = 𝑞 𝑝1𝑞1−1 = 𝑝 

Since Sum of all the probabilities is equal to one, therefore Bernoulli distribution is a 

probability distribution. 

 

Definition: if X is a discrete random variable with probability mass function  

𝑝(𝑥) = {
𝑝𝑥𝑞1−𝑥 ,     𝑥 = 0,1; 0 < 𝑝 < 1; 𝑞 = 1 − 𝑝

0 ,                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 then the distribution of X is called Bernoulli 

distribution.  

 

Features of Bernoulli distribution: 

1. p is the parameter of Bernoulli distribution.  

2. The range of Bernoulli distribution is x=0, 1. 

3. For Bernoulli distribution, mean = p, variance = pq and SD=√𝑝𝑞. 

4. For Bernoulli distribution, mean > variance. 

5. The moment generating distribution of B(1, p) is 𝑀𝑋(𝑡) = 𝑞 + 𝑝𝑒𝑡. 

Examples on Bernoulli distribution: 

1. Observe the new born baby and determine if the baby is a male or a female. 
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2. A contractor makes a certain tender for a contract; the outcome may be success or 

failure. 

3. Inspect an item from production line and observe if it is defective or non-defective. 

 

9.4 Binomial distribution: 

Binomial distribution was discovered by James Bernoulli (1654-1705) in the year 1700 and was 

first published posthumously in 1713.Binomial distribution has n-independent Bernoulli trials. 

Here ‘n’ is finite and fixed. Each trials results either in a success or failure. The trials are 

mutually exclusive and exhaustive.  The probability of success say,’p’ remains same for each 

trial. 

The probability of x successes and consequently (n-x) failures in n-independent trials, in a 

specific order (say) SSFFSFFFFSFSS (where S=success and F=failure) is given by multiplication 

probability theorem by the expression: 

P(SSFFSFFFFSSSS) = P(S)*P(S)*P(F)*……*P(F)*P(S)*P(S) 

           = p*p*q*…..*q*p*p 

                                  = (p.p.p…p)*(q.q….q)   

 (here x times of p and (n - x) times of q appears) 

                                  = 𝑝𝑥𝑞𝑛−𝑥. 

But x successes in n trials can occur in (𝑛
𝑥

)ways and the probability for each of these ways is 

same, viz., 𝑝𝑥𝑞𝑛−𝑥. Hence by addition theorem of probability the p.m.f can be written as 

(𝑛
𝑥

)𝑝𝑥𝑞𝑛−𝑥. 

The Binomial distribution with parameters n and p can be written as follows: 

X 0 1 2 …… n 

P(x) (
𝑛

0
) 𝑝0𝑞𝑛−0 = 𝑞𝑛 (

𝑛

1
) 𝑝1𝑞𝑛−1 (

𝑛

2
) 𝑝2𝑞𝑛−2 

…… (
𝑛

𝑛
) 𝑝𝑛𝑞𝑛−𝑛 = 𝑝𝑛 

 

There are (n+1) probability terms in a binomial distribution. The successive probability terms are 

the successive terms in the binomial expansion of (𝑞 + 𝑝)𝑛. Sum of all the probabilities are equal 

to one, because binomial distribution is a probability distribution. 

 

Definition: A random variable X is said to follow a Binomial distribution if it assumes 

only non-negative values and its p.m.f is given by  

𝑃(𝑥) = {
(

𝑛

𝑥
) 𝑝𝑥𝑞𝑛−𝑥 ,   𝑥 = 0,1,2, … . . 𝑛; 0 < 𝑝 < 1; 𝑞 = 1 − 𝑝

0 ,                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Here n and p are known as the parameter s of the distribution. 

 

Remark: the assignment of probability is permissible, because 

 ∑ 𝑃(𝑋 = 𝑥) =𝑛
𝑥=0 ∑ (𝑛

𝑥
)𝑝𝑥𝑞𝑛−𝑥 = (𝑞 + 𝑝)𝑛 = 1𝑛

𝑥=0  

 

9.5 Mean and variance of Binomial distribution: 

To derive mean and variance of Binomial distribution, we use the definition of Expectation as 
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𝜇 =  𝐸(𝑋) = ∑ 𝑥𝑃(𝑥) =

𝑛

𝑥=0

∑ 𝑥 (
𝑛

𝑥
) 𝑝𝑥𝑞𝑛−𝑥

𝑛

𝑥=0

 

= 0 + ∑ 𝑥 (
𝑛

𝑥
) 𝑝𝑥𝑞𝑛−𝑥

𝑛

𝑥=1

 

= ∑ 𝑥 (
𝑛(𝑛 − 1)!

(𝑛 − 𝑥)! 𝑥(𝑥 − 1)!
) 𝑝𝑥𝑞𝑛−𝑥

𝑛

𝑥=1

 

= 𝑛 ∑ (
𝑛 − 1

𝑥 − 1
) 𝑝𝑥−1+1𝑞𝑛−𝑥

𝑛

𝑥=1

 

= 𝑛𝑝 ∑ (
𝑛 − 1

𝑥 − 1
) 𝑝𝑥−1𝑞𝑛−𝑥

𝑛

𝑥=1

 

= 𝑛𝑝 ∑ (
𝑛 − 1

𝑥 − 1
) 𝑝𝑥−1𝑞𝑛−𝑥

𝑛

𝑥=1

 

= 𝑛𝑝(𝑞 + 𝑝)𝑛−1 

[∵ W. K. T successive terms of binomail distribution for (
𝑛

𝑥
) 𝑝𝑥𝑞𝑛−𝑥  𝑖𝑠 (𝑞 + 𝑝)𝑛 = 1 ] 

μ = np , which is the mean of binomial distribution. 

Consider, 𝐸(𝑋2) = 𝐸(𝑋2 − 𝑋 + 𝑋) = 𝐸(𝑋(𝑋 − 1) + 𝑋) = 𝐸(𝑋(𝑋 − 1)) + 𝐸(𝑋) 

=∑ 𝑥(𝑥 − 1)(𝑛
𝑥

)𝑝𝑥𝑞𝑛−𝑥𝑛
𝑥=0 + 𝐸(𝑋) 

= 0 + 0 + ∑ 𝑥(𝑥 − 1) (
𝑛(𝑛 − 1)(𝑛 − 2)!

(𝑛 − 𝑥)! 𝑥(𝑥 − 1)(𝑥 − 2)!
) 𝑝𝑥−2+2𝑞𝑛−𝑥 + 𝐸(𝑋) 

𝑛

𝑥=2

 

= 𝑛(𝑛 − 1)𝑝2 ∑ (
𝑛 − 2

𝑥 − 2
) 𝑝𝑥−2𝑞𝑛−𝑥

𝑛

𝑥=2

+ 𝐸(𝑋) 

= 𝑛(𝑛 − 1)𝑝2(𝑞 + 𝑝)𝑛−2 + 𝐸(𝑋) = 𝑛(𝑛 − 1)𝑝2(1) + 𝑛𝑝 

[∵ W. K. T successive terms of binomail distribution for (
n

x
) pxqn−x is (q + p)n = 1 ] 

∴ 𝑉(𝑋) = 𝜎2 =  𝐸(𝑋2) − (𝐸(𝑋))2 

= 𝑛(𝑛 − 1)𝑝2 + 𝑛𝑝 − 𝑛2𝑝2 

= 𝑛𝑝(1 − 𝑝) 

= 𝑛𝑝𝑞, which is the variance of binomial distribution. 

 

Example on Binomial distribution: 

1. Number of heads obtained on tossing 4 coins. 

2. Number of bombs hitting a target among 3 bombs which are aimed at it. 

 

Features of Binomial distribution: 

1. The parameters of Binomial distribution are n and p. 

2. The range of Binomial distribution is x = 0, 1, 2, …, n. 
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3. The mean and variance of Binomial distribution is mean= np and variance = 

npq. 

4. The moment generating function of Binomial distribution is 𝑀𝑋(𝑡) =

[1 + 𝑝(𝑒𝑡 − 1)]𝑛. 

5. The relationship between mean and variance of Binomial distribution is 

mean > variance ( because 0<p<1 and 0<q<1) 

6. If p=q=0.5, then Binomial distribution is symmetrical (i.e., β1=0) 

7. The recurrence relation of binomial distribution in terms of probability  is 

P(x) =
𝑛−𝑥+1

𝑥
⨯

𝑝

𝑞
⨯ 𝑃(𝑥 − 1), where x = 1,2,….,n 

 

Note: 1. Additive property of Binomial distribution:Let X~B(n1, p1 ) and Y~ B(n2, p2 ) 

be independent random variables then sum of two independent Binomial variate is not a 

binomial variate. 

2. If p1 = p2 = p, then X+Y~B(n1 +n2 , p) which means Binomial distribution possess 

additive property if p1= p2. 

 

Some Examples: 

Example 1. In a college, 70% of the students are boys. In a random sample of 3 

students, find the probability of getting i) two boys, ii) at least one boy. 

Solution: Here X denotes number of boys selected at random of 3 students. 

 Then X~B(n,p) where n=3, p=0.7, q=1-p=1-0.7=0.3 

  WKT, the p.m.f of Binomial distribution is  

𝑃(𝑥) = (
𝑛

𝑥
) 𝑝𝑥𝑞𝑛−𝑥 , 𝑥 = 0,1,2, … , 𝑛; 0 < 𝑝 < 1; 𝑞 = 1 − 𝑝 

  = (3
𝑥
)(0.7)𝑥(0.3)3−𝑥 , 𝑥 = 0,1,2,3. 

 

i) P(two boys) = P(X=2) = (3
2
)(0.7)2(0.3)3−2 = 3 × 0.49 × 0.3 

= 0.441 

ii) P(at least one boy)  = 𝑃(𝑋 ≥ 1) = 𝑃(𝑋 = 1 𝑜𝑟 2 𝑜𝑟 3) 

= 𝑃(𝑋 = 1) + 𝑃(𝑋 = 2) + 𝑃(𝑋 = 3) 

= (
3

1
) (0.7)1(0.3)3−1 + (

3

2
) (0.7)2(0.3)3−2 + (

3

3
) (0.7)3(0.3)3−3 

= 0.189 + 0.441 + 0.343 = 0.973 

Alternatively,  P(at least one boy)  = 𝑃(𝑋 ≥ 1) = 1 − 𝑃(𝑋 < 1) 

= 1 − 𝑃(𝑋 = 0) 

= 1 − [(
3

0
) (0.7)0(0.3)3−0] 

= 1 − 0.027 = 0.973 

 

Example 2. In a garden, there are 200 trees. Out of which 50 are orange trees. Among 

them, if 20 samples of 4 trees each are selected, in how many samples will you expect i) 
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exactly 2 orange tree, ii) at the most one orange tree. 

Solution: Here X denotes number of orange trees selected at random of 4 trees. 

Then X~B(n, p) where n=4, p=50/200=0.25, q=1-p=1-0.25=0.75, N=20 

         WKT, the p.m.f of Binomial distribution is  

𝑃(𝑥) = (
𝑛

𝑥
) 𝑝𝑥𝑞𝑛−𝑥 , 𝑥 = 0,1,2, … , 𝑛; 0 < 𝑝 < 1; 𝑞 = 1 − 𝑝 

  = (4
𝑥
)(0.25)𝑥(0.75)4−𝑥 , 𝑥 = 0,1,2,3,4. 

i) P(two orange tree) = P(X=2) = (4
2
)(0.25)2(0.75)4−2 

   = 6 × 0.0625 × 0.5625 

= 0.2109 

Therefore, number of samples in which there are 2 exactly two orange trees = 𝑁 ×

P(𝑋 = 2) = 20 × 0.2109 = 4.218 ≅ 4. 

ii) P(at most one orange tree)  = 𝑃(𝑋 ≤ 1) 

= 𝑃(𝑋 = 0 𝑜𝑟 1) 

= 𝑃(𝑋 = 0) + 𝑃(𝑋 = 1) 

= (
4

0
) (0.25)0(0.75)4−0 + (

4

1
) (0.25)1(0.75)4−1 

= 1 × 1 × 0.3164 + 4 × 0.25 × 0.4218 

= 0.7382 

Therefore, number of samples in which there are 2 at most one orange tree = 𝑁 ×

P(𝑋 ≤ 1) = 20 × 0.7382 = 14.764 ≅ 15. 

 

Example 3. Five coins are tossed and the number of heads are noted when an experiment is 

repeated 128 times and the following data is obtained. Fit a binomial distribution assuming a coin 

is unbiased. 

No. of heads 0 1 2 3 4 5 

Frequency 10 26 35 28 20 9 

 

Solution: X~B (n , p) where n=5, p=0.5( unbiased coin ), q = 1- p = 1-0.5 = 0.5, N=128. 

             WKT, the p.m.f of Binomial distribution is 

 

𝑃(𝑥) = (
𝑛

𝑥
) 𝑝𝑥𝑞𝑛−𝑥 , 𝑥 = 0,1,2, … , 𝑛; 0 < 𝑝 < 1; 𝑞 = 1 − 𝑝 

 = (5
𝑥
)(0.5)𝑥(0.5)5−𝑥 , 𝑥 = 0,1,2, … ,5. 

 

To find the expected frequencies: Ex = N. P(x) we need to fit the binomial distribution 

which is as follows: 

At x=0,  P(X=0) =(5
0
)(0.5)0(0.5)5−0 = 0.03125 

E0 = N. P(0) = 128*0.03125 = 4 

By using recurrence relation for expected frequencies 

Ex =
n−x+1

x
⨯

p

q
⨯ E(x − 1), where x=1,2,….,n 
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E1 = 
5−1+1

1
⨯ 1 ⨯ 4 = 20  ;     E2 = 

5−2+1

2
⨯ 1 ⨯ 20 = 40 

E3 = 
5−3+1

3
⨯ 1 ⨯ 40 = 40 ;  E4 = 

5−4+1

4
⨯ 1 ⨯ 40 = 20 

E5 = 
5−5+1

5
⨯ 1 ⨯ 20 = 4 

Thus, the expected frequencies can be written in the below table: 

No. of heads 0 1 2 3 4 5 Total 

Frequency 10 26 35 28 20 9 N=128 

Expected frequency  4 20 40 40 20 4 N=128 

 

9.6 Poisson distribution 

Poisson distribution was discovered by the French mathematician and physicist Denis 

Poisson (1781-1840) who published it in 1837. Poisson distribution is a limiting case of 

Binomial distribution under the following conditions: 

 n, the number of trials is infinitely large. i.e., n → ∞ 

 p, the constant probability of success for each trial is indefinitely small. i.e., p →

0 

 np = λ, (say)is finite. 

 

9.7 Poisson distribution is a limiting case of Binomial distribution: 

Proof: consider the p.m.f of Binomial distribution 

𝑃(𝑥) = (
𝑛

𝑥
) 𝑝𝑥𝑞𝑛−𝑥 , 𝑥 = 0,1,2, … , 𝑛; 0 < 𝑝 < 1; 𝑞 = 1 − 𝑝 

                               =(𝑛
𝑥

)𝑝𝑥(1 − 𝑝)𝑛−𝑥 

                               =(𝑛
𝑥

) (
𝑝

1−𝑝
)

𝑥
(1 − 𝑝)𝑛 

                              =
𝑛(𝑛−1)(𝑛−2)….(𝑛−𝑥+1)

𝑥!
(

𝑝

1−𝑝
)

𝑥

(1 − 𝑝)𝑛 

Consider np=λ⟹ p =
λ

n
→ (∗) 

                              =
𝑛(𝑛−1)(𝑛−2)….(𝑛−𝑥+1)

𝑥!
(

𝜆

𝑛

1−
𝜆

𝑛

)

𝑥

(1 −
𝜆

𝑛
)

𝑛

           [from (*)] 

                               =
(1−

1

𝑛
)(1−

2

𝑛
)….(1−

(𝑥−1)

𝑛
)

𝑥! (1−
𝜆

𝑛
)

𝑥 (𝜆)𝑥 (1 −
𝜆

𝑛
)

𝑛

 

                Take limits on both sides as 𝑛 → ∞ we get 

lim
𝑛→∞

𝑃(𝑥) =
e−λλ

x

x!
, x = 0,1,2, … .. 

 

Note.  lim
𝑛→∞

(1 −
𝜆

𝑛
)

𝑛

= e−λ, and lim
𝑛→∞

(1 −
𝜆

𝑛
)

𝛼

= 1, if 𝛼is not a function of n. 

 

Definition: A random variable X is said to follow a Poisson distribution if it assumes 

only non-negative values and its p.m.f is given by  
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p(x) = {
e−λλ

x

x!
,                        x = 0,1,2, … . . ; λ ≥ 0

0 ,                                otherwise

 

Here λ is known as the parameter of the distribution. 

 

Note. Poisson process measures the number of occurrence of an outcome of a discrete 

random variable in a predetermined time interval, for which an average number of 

occurrences is known. 

 

9.8 Mean and variance of Poisson distribution: 

To derive mean and variance of Poisson distribution, we use the definition of Expectation as 

μ =  E(X) = ∑ xP(x) = ∑ x
𝑒−𝜆𝜆𝑥

𝑥!

∞

x=0

n

x=0

 

= 𝑒−𝜆 [0 ×
𝜆0

0!
+ 1 ×

𝜆1

1!
+ 2 ×

𝜆2

2!
+ ⋯ ] 

= 𝑒−𝜆 [𝜆 + 𝜆2 +
𝜆3

2!
+ ⋯ ] 

= 𝜆𝑒−𝜆 [1 + 𝜆 +
𝜆2

2!
+ ⋯ ] 

= 𝜆𝑒−𝜆𝑒𝜆 

= 𝜆, which is the mean of Poisson distribution. 

Consider, E(X2) = E(X2 − X + X) = E(X(X − 1) + X) = E(X(X − 1)) + E(X) 

= ∑ x(x − 1)
𝑒−𝜆𝜆𝑥

𝑥!
+ 𝐸(𝑋)

∞

x=0

 

= 0 + 0 + ∑ x(x − 1)
𝑒−𝜆𝜆𝑥

𝑥(𝑥 − 1)(𝑥 − 2)!
+ 𝐸(𝑋)

∞

x=2

 

= 𝑒−𝜆 ∑
𝜆𝑥

(𝑥 − 2)!
+ 𝐸(𝑋)

∞

x=2

 

= 𝑒−𝜆 [
𝜆2

1
+

𝜆3

1!
+

𝜆4

2!
… ] + 𝐸(𝑋) 

= 𝜆2𝑒−𝜆 [ 1 + 𝜆 +
𝜆2

2
… ] + 𝐸(𝑋) 

= 𝜆2𝑒−𝜆𝑒𝜆 + 𝐸(𝑋) 

= 𝜆2𝑒−𝜆𝑒𝜆 + 𝜆 

= 𝜆2 + 𝜆 

∴ 𝑉(𝑋) = 𝜎2 =  𝐸(𝑋2) − (𝐸(𝑋))2 

= 𝜆2 + 𝜆 − 𝜆2 

= 𝜆, which is the variance of Poisson distribution. 
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Examples: 

1. Number of accidents per week in a city. 

2. Number of defective items in a box. 

3. Number of patients visits the doctor per day between 6pm to 8pm. 

Features of Poisson distribution: 

1. The parameter of Poisson distribution is λ. 

2. The range of Poisson distribution is x=0, 1, 2 ….∞ 

3. The mean and variance of Poisson distribution is mean=λ and variance=λ. 

4. The moment generating function of Poisson distribution is Mx(𝑡) =

𝑒𝜆(𝑒𝑡−1). 

5. The relationship between mean and variance of Poisson distribution is mean 

= variance. 

6. When λ is large, the Poisson distribution tends to normal distribution. 

7. The recurrence relation of Poisson distribution in terms of probability  is  

P(x) =
λ

x
⨯ P(x − 1), where x=1,2,…. 

Note. Additive property of Poisson distribution:Let X~P(λ1) and Y~ P(λ2) be 

independent random variables then sum of two independent Poisson variate is also a 

Poisson variate(i.e., X+Y is also a Poisson variate with parameter λ1+ λ2 ). More 

elaborately, if Xi, i=1, 2, …, n are independent Poisson variates with parameter λi, i=1, 

2, …, n respectively, then ∑ 𝑋𝑖
𝑛
𝑖=1  is also a Poisson variate with parameter ∑ 𝜆𝑖

𝑛
𝑖=1 . 

 

Some Examples: 

Example 1.A typist makes 3 mistakes per page on an average. Find the probability that a 

page typed by him has i) 1 mistake, ii) at the most 2 mistakes. 

Solution: Here X: Number of typing mistakes per page. 

Then X~P(λ), where λ=average typing mistakes=3. 

WKT, the p.m.f of Poisson distribution is  

P(x) =
e−λλ

x

x!
, x = 0,1,2, … . . ; λ ≥ 0 

=
e−33x

x!
 , x = 0,1,2, … .. 

i) P(1 mistake) = P(X=1)= 
e−331

1!
 

         =
0.049×3

1
= 0.147 

ii) P(at the most 2 mistakes)=𝑃(𝑋 ≤ 2) 

= 𝑃(𝑋 = 0 𝑜𝑟 1 𝑜𝑟 2) 

= 𝑃(𝑋 = 0) + 𝑃(𝑋 = 1) + 𝑃(𝑋 = 2) 

=
e−330

0!
+

e−331

1!
+

e−332

2!
 

= 0.049+0.147+0.2205 

= 0.4165 



 

 

 

 

127 

 

Example 2.On an average, the number of defective items in a box is 4. If there are 100 

such boxes, in how many of them would you expect i) 2 defective items, ii) at least 1 

defective item. 

Solution: Here X: Number of defective item per box.Then X~P(λ), where λ=average 

number of defective items =4. 

WKT, the p.m.f of Poisson distribution is  

P(x) =
e−λλ

x

x!
, x = 0,1,2, … . . ; λ ≥ 0 

=
e−44x

x!
 , x = 0,1,2, … .. 

i) P(2 defective items) = P(X=1)= 
e−442

2!
 

      =
0.0183×16

2
 

 = 0.1464 

               Therefore, expected number of boxes having two defective items = 

N × P(X = 2) = 100 × 0.1464 = 14.64 ≅ 15boxes. 

ii) P(at least 1 defective item) =𝑃(𝑋 ≥ 1) 

   = 1 − 𝑃(𝑋 < 1) = 1 − 𝑃(𝑋 = 0) 

= 1 − [
e−440

0!
] 

= 1 − 0.0183 = 0.9817 

Therefore, expected number of boxes having at least 1 defective item = 

N × P(X ≥ 1) = 100 × 0.9817 = 98.17 ≅ 98boxes. 

Exercise 

1. For a Bernoulli distribution with parameter p=0.4. Write the p.m.f and hence find its 

mean and variance. 

2. The probability of hitting the target is ¼. If 3 arrows are aimed at the tree, find the 

probability that i) 2 arrows hit the tree, ii) at least one arrow hit the tree. 

3. The incidence of an occupational disease in a factory is such that the workers have 

30% chance of suffering from it. What is the probability that out of 5 workers 3 or 

more contract the disease? 

4. The following data relates to the number of defective items in a sample of 5 for 500 

samples taken during a week. 

No. Of defective items 0 1 2 3 4 5 

No. Of samples 160 188 120 20 10 2 

5. If has been found that on an average 3 patients visits a particular doctor during an 

hour. What is the probability that during a particular hour i) no patients visit the 

doctor, ii) more than 2 patients visits the doctor. 

6. On an average a box contains 2 defective items. Find the probability that a randomly 

selected box has i) no defective items, ii) at the most 2 defective items. 
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7. Fit a Poisson distribution to the following data and hence find the expected 

frequencies. 

X 0 1 2 3 4 Total 

F 211 90 20 4 0 325 
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UNIT 10 

STANDARAD CONTINUOUS PROBABILITY DISTRIBUTIONS 

10.1 Objective 

After studying this chapter, we are able to know the probability density functions of some 

standard continuous distributions and some properties, moment generating functions of these 

continuous distributions. Also, this will help us to learn about the possible applications of these 

distributions in the analysis of data. 

 

10.2 Introduction 

Since continuous random variables such as height, weight, income, etc can take large number of 

both integer and non-integer values. The sum of probability to each of these values is no longer 

sum to 1. Unlike discrete random variable, continuous random variables do not have probability 

distribution function specifying the exact probabilities of their specific values. Instead, a 

distribution determines probabilities that the random variable fall into a specified interval of 

values such function called as probability density function. Here, area under the probability 

distribution is equal to one and P(a<X<b) represents the area under the probability density 

function curve between the values a and b. 

Some of the standard univariate continuous distributions are uniform, Normal, exponential, 

Gamma and beta distribution. 

 

10.3 Continuous uniform distribution: 

Definition: A random variable X is said to have continuous uniform distribution over an interval 

(a, b), the its p.d.f is given by f(x) = {
1

b−a
 ,   if a < 𝑥 < 𝑏; −∞ < 𝑎 < 𝑏 < ∞

0,                                        otherwise
 

It is also called as rectangular distribution. 

 The cumulative distribution function of continuous uniform distribution is given by 

F(x) = {

0 ,         x ≤ a
x − b

b − a
, a < 𝑥 < 𝑏

1,         x ≥ b

 

 This distribution is also called as constant distribution because the probability is constant 

(
1

b−a
) at every point of the interval (a, b) and is independent of values of the variable may 

take within the interval. 

 This distribution is useful when the probability of occurrences of an event is constant and 

all possible values of the continuous variable are assumed equally likely. 

 

Features of continuous uniform distribution: 

1. The parameters of continuous uniform distribution is a and b. 

2. The mean and variance of continuous uniform distribution is mean =
b+a

2
 and variance =

(b−a)2

12
. 



 

 

 

 

130 

3. The moment generating function of continuous uniform distribution is Mx(𝑡) =
𝑒𝑏𝑡−𝑒𝑎𝑡

𝑡(𝑏−𝑎)
 , 𝑡 ≠ 0. 

4. The mean deviation from mean of continuous uniform distribution is MD(𝑋̅) =
b−a

4
. 

 

10.4 Normal distribution 

It is the most useful theoretical distribution for continuous variables. Many statistical data 

concerning problems are displayed in the form of normal distribution. It is the corner stone of 

modern statistics. Historically normal distribution is associated with the names of De-Morvie, 

Pierre Laplace and Karl F. Gauss. In 1809 Gauss derived this distribution (also known as 

Gaussian distribution) as a model for measurement of errors, which is called ‘normal law of 

error’. The frequency distribution of values of the random variable observed in nature which 

follows this pattern approximately bell shaped. Thus, such distribution of measurements is called 

a normal distribution. 

 

Definition: A continuous random variable X is said to be a normal distribution with probability 

density function is given by 

f(x) =
1

σ√2π
e

−
1

2σ2(x−μ)2

; where − ∞ < 𝑥 < ∞; −∞ < 𝜇 < ∞; 𝜎 > 0. 

Here μ and σ2 are the parameters of Normal distribution. It is denoted as X~N(μ, σ2). 

 

Examples: 

1. Heights of a group of persons in a locality. 

2. Weights of mangoes grown in tree. 

3. Marks scored by students in an examination. 

 

10.5 Mean and Variance of Normal distribution: 

W.K.T the p.d.f of normal distribution is  

f(x) =
1

σ√2π
e

−
1

2σ2(x−μ)2

; where − ∞ < 𝑥 < ∞; −∞ < 𝜇 < ∞; 𝜎 > 0. 

Then mean= E(X) = ∫ x. f(x)dx = ∫ x.
1

σ√2π
e

−
1

2σ2(x−μ)2

dx
∞

−∞

∞

−∞
 

=
1

σ√2π
∫ x. e−

1

2
(

x−μ

σ
)

2

dx
∞

−∞

 

By substitution method, put t =
x−μ

σ
⇒ tσ = x − μ 

     ⇒ σdt = dx 

When x = −∞ ⇒ t = −∞ and x = ∞ ⇒ t = ∞  

On substituting to the above integral we get, 

E(X) =
1

σ√2π
∫ (μ + σt). e−

1

2
t2

σdt
∞

−∞
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=
1

√2π
∫ μ. e−

1

2
t2

dt
∞

−∞

+
σ

√2π
∫ t. e−

1

2
t2

dt
∞

−∞

 

=
2μ

√2π
∫ e−

1

2
t2

dt
∞

0

+  0 

(Since first integral is an even function and second integral is odd function) 

    =
2μ

√2π
√

π

2
+  0  (From the below remark 4, 5 and 6) 

=  μ, which is the mean of normal distribution. 

Variance = 𝑉(𝑋) = E(X − μ)2 = ∫ (x − μ)2. f(x)dx
∞

−∞
 

= ∫ (x − μ)2.
1

σ√2π
e

−
1

2σ2(x−μ)2

dx
∞

−∞

 

By substitution, the above integral reduces to 

=
1

σ√2π
∫ t2σ2. e−

1

2
t2

σdt
∞

−∞

 

=
σ2

√2π
∫ t2. e−

1

2
t2

∞

−∞

dt 

=
σ2

√2π
2 ∫ t2. e−

1

2
t2

∞

0

dt 

                                          (Since this integral is an even function) 

=
2σ2

√2π
√

π

2
   (From the below remark 4 and 5) 

= σ2, which is the variance of normal distribution. 

 

10.6 Properties of Normal distribution: 

1. The normal curve is bell shaped. 

2. The normal curve is symmetrical about the mean(i.e., β1=0) 

3. Here, mean=median=mode=μ. 

4. The normal distribution has unimodal. 

5. The normal distribution is mesokurtic (i.e., β2=3) 

6. For a normal distribution, standard deviation =σ, quartile deviation=
2

3
𝜎, and mean 

deviation=
4

5
𝜎. 

7. The normal curve has points of inflexion (i.e., changes in curvature) at μ-σ and μ+σ. 

8. For normal distribution, the odd order moments are equal to zero i.e., 𝜇1 = 𝜇3 = 𝜇5 = ⋯ =

0 and even order moments are constants i.e., 𝜇2𝑟 = 1 × 3 × 5 × … × (2𝑟 − 1)𝜎2𝑟; 𝑟 =

1,2,3, …. 

9. The quartile Q1 and Q3 are equidistant from median and it is given by Q1= μ-0.6745σ 

and Q3= μ+0.6745σ. 

10. The total area under normal curve is equal to 1. So that area to the right of the ordinate at 

the mean and left of the ordinate at the mean is 0.5.  

Area property of normal distribution: 
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 P(μ-σ<x< μ+σ)=0.6826=66.26% 

 P(μ-2σ<x< μ+2σ)=0.9544=95.44% 

 P(μ-3σ<x< μ+3σ)=0.9974=99.74% 

Though normal curve extends to -∞ and ∞, yet hardly 0.3% of the area lies beyond the limits 

μ-3σ and μ+3σ.     

 
 

10.7 Standard normal distribution: 

Definition: if Z is a normal variate with mean µ=0 and S.D. σ=1, then Z is called a standard 

normal variate and the distribution is called standard normal distribution. Its p.d.f is given by  

f(z) =
1

σ√2π
e−

z2

2 ; where − ∞ < 𝑧 < ∞. 

Note.  

 If X is a normal variate with mean µ and S.D. σ, then 𝑧 =
𝑥−𝜇

𝜎
~𝑁(0,1) is a standard 

normal variate. i.e., if X~N(μ, σ2) then Z~N(0,1). 

 For a standard normal distribution mean=0, variance=1 and S.D. =1. 

 The curve is bell shaped. 

 It is symmetrical about Z=0. i.e., mean=median=mode=0. 

 Total area under the standard normal curve is equal to one. 

 

Example: If X is a normal variate with mean 60 and S.D.4, find the probability that i) X≤64, ii) 

X≥62, iii) 55<X<65. 

Solution: given X~ N(μ, σ2) with µ=60,  σ=4 

Then, z =
x−μ

σ
=

x−60

4
~N(0,1) 

i) P(X ≤ 64) = P (
x−60

4
≤

64−60

4
) 

= P(z ≤ 1) 

                  = area from -∞ to 1                     

                  = 0.8413  [from normal table] 
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ii) P(X≥62) = P (
x−60

4
≥

62−60

4
) 

= P(z ≥ 0.5) 

                   = area from 0.5 to ∞                            

= (area from -∞ to ∞)-(area from -∞ to 0.5) 

                               =1-0.6915 [from normal table] 

                               =0.3085 

 

 

iii) P(55<X<65) = P (
55−60

4
<

x−60

4
<

65−60

4
) 

= P(−1.25 < 𝑧 < 1.25) 

                  = area from -1.25 to 1.25                         

= (area from -∞ to 1.25)-(area from -∞ to -1.25) 

                               =0.8944-0.1056 [from normal table] 

                               =0.7888 

 

 

Example: If Z is a standard normal variate and P(Z < k)=0.25, find the value of k. 

Solution:  

Given P(Z < k)=0.25 

From normal take we have to find the 

ordinates where the probability value 0.25 

coincide. 

Since, 0.25 coincide to the ordinate -1.96 

Therefore, k=-1.96 and P(Z < -1.96) = 0.25. 

 
 

Example: Monthly income of employees follows normal distribution with mean Rs. 20,000 and 

S.D Rs.600. find the percentage of employees with monthly income i) less than Rs.22000, ii) lies 

between Rs. 16000 and 21000. 

Solution: Here, X: monthly income of employees. 

Then X~ N(μ, σ2) with µ=20000,  σ=600 

Then, z =
x−μ

σ
=

x−20000

600
~N(0,1) 

i) P(X<22000) = P (
x−20000

600
<

22000−20000

600
) 

= P(z < 3.33) 

= area from -∞ to 3.33 

               = 0.9996  [from normal table] 

Therefore, the percentage of employees with monthly 

income less than Rs.22000 is 100* P(X<22000) 

=100*0.9996=99.96%. 
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ii) P(16000<X<21000)  

= P (
16000 − 20000

600
<

x − 20000

600
<

21000 − 20000

600
) 

= P(−6.667 < 𝑧 < 1.667) 

                  = area from -6.667 to 1.667 

    = (area from -∞ to 1.667)-(area from -∞ to −6.667) 

                       =0.9522-0.000 [from normal table] 

                       =0.9552 

Therefore, the percentage of employees with 

monthly income lies between Rs. 16000 and 21000 

is 100* P(16000<X<21000) =100*0. 

9552=95.52%. 

 

 

10.8 Exponential distribution:  

Definition: A random variable X is said to have an exponential distribution with parameter θ>0, 

its p.d.f id given by f(x) = {θe−θx , θ > 0, 0 < 𝑥 < ∞
0 ,          otherwise

 

Here θ is the parameter of exponential distribution. it is denoted as X~ exp(θ). 

 The cumulative distribution function is given by  

F(x) = {1 − e−θx,                x ≥ 0
0,                 otherswise

 

 Exponential distribution is closely related with the Poisson distribution. For example, if 

the Poisson random variable represents the number of arrivals per unit timwe at a service 

window, the exponential random variable will represent the time between two successive 

arrivals. 

 The p.d.f of exponential distribution can be also written as  

f(x) = {
1

θ
e−x

θ⁄  , θ > 0, 0 < 𝑥 < ∞

0 ,          otherwise
 

Here the mean of the exponential distribution is θ and variance is θ2. 

 

Features of exponential distribution: 

1. The mean and variance of exponential distribution is mean=
1

𝜃
 and variance=

1

𝜃2. 

2. The moment generating function of exponential distribution is Mx(𝑡) = (1 −
𝑡

θ
)

−1

, 𝜃 >

𝑡. 

The relationship between mean and variance of exponential distribution is  

if 0 < 𝜃 < 1 ⇒ 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 > mean 

if θ = 1 ⇒ variance = mean 

if θ > 1 ⇒ variance < 𝑚𝑒𝑎𝑛 

10.9 Mean and variance of Exponential distribution: 
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W.K.T the p.d.f of exponential distribution is f(x) = {θe−θx , θ > 0, 0 < 𝑥 < ∞
0 ,          otherwise

 

Then mean = E(X) = ∫ x. f(x)dx = ∫ x. θe−θxdx
∞

0

∞

−∞
 

 

 By applying integration by parts, the above integral can be written as 

= θ [x × ∫ e−θxdx − ∫ (∫ e−θx
∞

0

) dx ×
d

dx
(x)

∞

0

∞

0

] 

= θ [(x × (
e−θx

−θ
))

x=0

x=∞

− ∫ (
e−θx

−θ
) dx

∞

0

× (1)] 

= θ [((∞ × (
e−θ∞

−θ
)) − (0 × (

e−θ0

−θ
))) +

1

𝜃
(

e−θx

−θ
)

x=0

x=∞

] 

= θ [(0 − 0) −
1

𝜃
((

e−θ∞

θ
) − (

e−θ0

θ
))] 

= θ [−
1

𝜃
(0 −

1

𝜃
)] = θ (

1

𝜃2
) 

 =
1

𝜃
, which is the mean of exponential distribution. 

Consider E(X2) = ∫ x2. f(x)dx = ∫ x2. θe−θxdx
∞

0

∞

−∞
 

By applying integration by parts, the above integral can be written as 

= θ [x2 × ∫ e−θxdx − ∫ (∫ e−θx
∞

0

) dx ×
d

dx
(x2)

∞

0

∞

0

] 

 

= θ [(x2 × (
e−θx

−θ
))

x=0

x=∞

− ∫ (
e−θx

−θ
) dx

∞

0

× (2x)] 

= θ [((∞2 × (
e−θ∞

−θ
)) − (02 × (

e−θ0

−θ
))) +

2

𝜃
∫ x × e−θxdx

∞

0

] 

= θ [(0 − 0) +
2

𝜃
((x × (

e−θx

−θ
))

x=0

x=∞

− ∫ (
e−θx

−θ
) dx

∞

0

× (1))] 

= θ [
2

𝜃
((∞ × (

e−θ∞

−θ
)) − (0 × (

e−θ0

−θ
))) +

1

𝜃
(

e−θx

−θ
)

x=0

x=∞

] 

= θ [
2

𝜃
((0 − 0) −

1

𝜃2
(e−θ∞ − e−θ0))] 

= θ [
2

𝜃
(−

1

𝜃2
(0 − 1))] = θ [

2

𝜃
(

1

𝜃2)] =
2

𝜃2. 

            Hence, 𝑉(𝑋) = E(X2) − (E(X))
2

=
2

𝜃2 − (
1

𝜃
)

2
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=
1

𝜃2, which is the variance of exponential distribution. 

Example: If X is an exponential distribution with parameter 3.5, find variance, P(X>1), and 

P(X≤ 4). 

Solution: Given X~ exp( θ), where θ=3.5 

W.K.T the p.d.f of exponential distribution is  

f(x)= {3.5e−3.5x , θ > 0, 0 < 𝑥 < ∞
0 ,          otherwise

 

WKT, variance=
1

𝜃2 =
1

3.52 = 0.0816 

 

P(X > 1) = ∫ 3.5e−3.5xdx
∞

1

= 3.5 (
e−3.5x

−3.5
)

x=1

x=∞

= −(e−3.5(∞) − e−3.5(1)) 

= −(0 − e−3.5) = e−3.5 = 0.0302 

P(X ≤ 4) = ∫ 3.5e−3.5xdx
4

0

= 3.5 (
e−3.5x

−3.5
)

x=0

x=4

= −(e−3.5(4) − e−3.5(0)) 

= −(e−14 − 1) = −0.000000831 + 1 = 0.999 

 

Example: the monthly income of a group of 5000 persons were assumed to be exponential with 

mean Rs.800. how many persons have income i) between Rs.600 & Rs.1000, ii) less than Rs.600. 

Solution: Given X~ exp( θ), where θ = 1/mean = 1/800 = 0.00125.  

W.K.T the p.d.f of exponential distribution is f(x) = {θe−θx , θ > 0, 0 < 𝑥 < ∞
0 ,          otherwise

 

= {
0.00125e−0.00125x , θ > 0, 0 < 𝑥 < ∞

0 ,          otherwise
 

i) P(between Rs. 600 & Rs. 1000) = P(600 < 𝑋 < 1000) 

= ∫ 0.00125e−0.00125xdx
1000

600

 

= 0.00125 (
e−0.00125x

−0.00125
)

x=600

x=1000

 

 = −(e−0.00125(1000) − e−0.00125(600)) 

= −(0.2865 − 0.4723) 

= 0.1858 

Therefore, the number of persons having income between Rs.600 & Rs.1000 is N* P(600 < 𝑋 <

1000)=5000*0.1858= 929 persons. 

 

ii) P(less than Rs. 600) = P(X < 600) 

= ∫ 0.00125e−0.00125xdx
600

0

 

= 0.00125 (
e−0.00125x

−0.00125
)

x=0

x=600
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= −(e−0.00125(600) − e−0.00125(0)) 

                                   = - (0.4723-1) 

                                   = 0.5277 

Therefore, the number of persons having income less than Rs.600 is N* P(X <

600)=5000*0.5277 = 2638.5 ≈ 2639 persons. 

 

Exercise  

1. The mean and S.D of a normal distribution is 15 and 4 respectively. Find the upper and 

lower quartiles. 

2. If Z is a standard normal variate and P(Z>k)=0.1, find the value of k. 

3. Heights of 300 children are normally distributed with mean 120cms and variance 4cms2. 

Find the number of children having heights i) greater than 116cms, ii) between 115cms 

and 120cms, iii) less than 118cms. 

4. The weekly wages of workers are normally distributed with mean Rs.2500 and S.D. 

Rs.400. find the probability of workers whose weekly wages will be i) more than 

Rs.3000, ii) less than Rs.3500, iii) between Rs.2000 and Rs.3000. 

5.  The mileage(in thousands of miles), which car owners get with a certain kind of tyres is a 

random variable having p.d.f f(x) = {
0.00026e−0.00026x , θ > 0, 0 < 𝑥 < ∞

0 ,          otherwise
 

Find the probability that one of these tyres will last i) at least 2000miles, ii) between 800 

& 12000miles. 

6. If X is an exponential distribution with parameter 2.8, find variance, 

P(X>0.5), P(0<X≤ 3). 
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UNIT 11 

SAMPLING DISTRIBUTIONS 

11.1 Objectives: 

After studying this chapter, we can develop the concepts of a sampling distribution that helps to 

understand the methods and underlying thinking of statistical inference. 

 

11.2 Introduction 

As we have studied several methods to calculate parameters such as mean and standard deviation 

of the population of interest. These values were used to describe the characteristics of the 

population. If a population is very large and the description of its characteristics is not possible by 

the census method, then to use at the statistical inference, sample of a given size are drawn 

repeatedly from the population and a particular ‘statistic’ is computed for each sample and the 

computed value is likely to vary from sample to sample. Thus, it is possible to construct 

frequency table for various values of statistic. The distribution of values of a sample statistic is 

called a sampling distribution. Here samples are drawn based on simple random sampling, 

therefore sample statistic is random variable.  

 

Sampling distribution: The sampling distribution of a statistic is the distribution of the statistic 

for all possible samples from the same population of a given size. 

Standard error of an estimate: the standard deviation of the sampling distribution of a statistic 

is called standard error (S.E). 

 The following table represents standard error for some of the statistic: 

Statistic Standard error  

Sample mean (𝑋̅) 𝑆𝐸(𝑋̅) = 𝜎
√𝑛⁄  

Difference of means (𝑋̅1 − 𝑋̅2) 

𝑆𝐸(𝑋̅1 − 𝑋̅2) = √
𝜎1

2

𝑛1
+

𝜎2
2

𝑛2
 

Sample proportion(p) 𝑆𝐸(𝑝) = 𝑃𝑄
√𝑛

⁄  

Difference of proportion(p1-p2) if p1≠p2 

𝑆𝐸(𝑝1 − 𝑝2) = √
𝑃1𝑄1

𝑛1
+

𝑃2𝑄2

𝑛2
 

Difference of proportion(p1-p2) if p1= p2=p 

𝑆𝐸(𝑝1 − 𝑝2) = √𝑃𝑄 (
1

𝑛1
+

1

𝑛2
) 

 Uses of standard error: 

1. Standard error is used to decide the efficiency and consistency of the statistic as 

an estimator. 

2. It is used to obtain the confidence intervals of an estimate. 

3. It is used in the testing of hypothesis. 
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 Types of sampling distributions: 

1. Chi-square distribution 

2. Student’s t-distribution 

3. F-distribution 

 

11.3 Chi-Square Distribution 

The square of a standard normal variate is known as chi-square variate with 1degrees of freedom 

(d.f). Thus, if X⁓N (µ, σ2), then 𝑍 =
𝑋−𝜇

𝜎
~𝑁(0,1) and 𝑍2 = (

𝑋−𝜇

𝜎
)

2

is a chi-square variate with 1 

d.f. 

In general, if Xi, (i=1,2,3,……,n) are n independent normal variate with mean µi and variance 

σi
2(i=1,2,3,……,n), then 

𝒳2 = ∑ (
𝑋𝑖−𝜇𝑖

𝜎𝑖
)

2
𝑖=1
𝑛  is a chi-square variate with n d.f. 

Definition: If X follows chi-square variate with n d.f then the p.d.f of chi-square distribution is 

given by 𝑓(𝑥) =
1

2

𝑛
2𝛾(

𝑛
2

)⁄
𝑒−𝑥

2⁄ . 𝑥
𝑛

2
−1 , 0 ≤ 𝑥 < ∞. Then the distribution of X is called chi-square 

distribution with n d.f. 

 

Note: degrees of freedom (d.f): the number of independent variates which makes up the statistic 

is known as degrees of freedom. 

 

11.3.1 Features of chi-square distribution: 

1. n is the parameter of chi-square distribution. 

2. The range of chi-square distribution is0 ≤ 𝒳2 < ∞. 

3. For a chi-square distribution, mean=n, variance=2n and SD=√2𝑛. 

4. Mode of chi-square distribution is 𝑚𝑜𝑑𝑒 = {
𝑛 − 2,    𝑓𝑜𝑟𝑛 > 2
0,           𝑓𝑜𝑟𝑛 ≤ 2

. 

5. Chi-square distribution is positively skewed distribution(𝛽1 > 0). 

6. Chi-square distribution is leptokurtic(𝛽2 > 3). 

7. The total area under chi-square curve is equal to one. 

8. When𝑛 → ∞, chi-square variate tends to standard normal variate. 

 

11.3.2 Applications of Chi-square distribution: 

 It has many uses in the field of testing of hypothesis. Some of them are: 

1. To test the population variance. 

2. To test the goodness of fit. 

3. To test the independence of attributes. 

4. To test the homogeneity of independent estimates of the population variance. 

5. To test the homogeneity of independent estimates of the population correlation 

coefficients. 
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Chi-square probability curve: 

Curves for different K- degrees of freedom are as follows: 

 
 

11.4 Student’s t-distribution: 

Student’s t- distribution is also derived from the normal distribution. The distribution is 

introduced by W.S.Gossett in 1908. The t-distribution describes the standardized distances of 

sample means from the population mean when the population standard deviation is not known 

and the observation come from the normally distributed population. 

 

Definition: Let Xi, (i=1,2,3,……,n) be a random sample of size n from normal population. Then 

the student’s t-statistic is defined as 𝑡 =
𝑋̅−𝜇
𝑆

√𝑛
⁄

 follows student’s t-distribution with (n-1) d.f with 

p.d.f is given by 

𝑓(𝑡) =
1

√𝑛−1𝐵(
1

2
,
𝑛−1

2
)

1

(1+
𝑡2

𝑛−1
)

𝑛
2⁄
 , −∞ < 𝑡 < ∞. 

 

11.4.1 Features of chi-square distribution: 

1. n is the parameter of t-distribution. 

2. The range of t-distribution is−∞ < 𝑡 < ∞. 

3. The t-curve is a bell-shaped curve. 

4. The t-distribution is symmetric about t=0(𝛽1 > 0). 

5. For a t-distribution, mean=median=mode=0. 

6. Variance of t-distribution is given byvariance =
n

n−2
 , forn > 2. 

7. t-curve is asymptotic to X-axis. 

8. The t-distribution is leptokurtic(𝛽2 > 3). 

9. When𝑛 → ∞, t-variate tends to standard normal variate. 

 

11.4.2 The probability curve of student’s t-distribution: 

Curves for different degrees of freedom are as follows: 
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11.4.3 Applications of student’s t-distribution: 

1. To test the sample mean differs significantly from population mean. 

2. To test the significance difference between two sample means for independent samples. 

3. To test the significance difference between two sample means for dependent or paired 

samples. 

4. To test the significance of an observed correlation coefficient and sample regression 

coefficient. 

 

11.5 Snedecor’s F-distribution: 

The F- distribution arises from inferential statistics concerning population variances. More 

specifically, we use an F-distribution when we are studying the ratio of the variances of two 

normally distributed populations. It is used to construct confidence interval and testing of 

hypothesis about population variances. It is also used in one factor analysis of variance 

(ANOVA) and it is concerned with comparing the variation between several groups and variation 

within each group. 

 

Definition: F is defined as the ratio of two independent chi-square variate divided by their 

respective d.f i.e. 𝐹 =
𝑋

𝑚⁄

𝑌
𝑛⁄

, where X and Y are independent chi-square variate and it follows 

Snedecor’s F-distribution with (m, n) d.f with probability density function is given by: 

𝑓(𝐹) =
(

𝑚

𝑛
)

𝑚

2

𝐵 (
𝑚

2
,

𝑛

2
)

𝐹
𝑚

2
−1

(1 +
𝑚

𝑛
𝐹)

𝑚+𝑛

2

 , 0 ≤ 𝐹 < ∞ 

11.5.1 Features of F-distribution: 

1. m and n are the parameters of F-distribution. 

2. The range of F-distribution is 0 ≤ 𝐹 < ∞. 

3. For a F-distribution, mean =
𝑛

𝑛−2
, 𝑛 > 2, 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =

2𝑛2(𝑚+𝑛−2)

𝑚(𝑛−2)2(𝑛−4)
, 𝑛 > 4 𝑎𝑛𝑑𝑆𝐷 =

√
2𝑛2(𝑚+𝑛−2)

𝑚(𝑛−2)2(𝑛−4)
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4. The mode of F-distribution ismode =
𝑛(𝑚−2)

𝑚(𝑛+2)
 

5. The total area under F-distribution curve is unity. 

6. The reciprocal property of F-distribution is  

𝐹𝛼

2
,(𝑚−1 ,   𝑛−1)  ×  𝐹1−

𝛼

2
,(𝑛−1 ,   𝑚−1) = 1 

⇒ 𝐹𝛼

2
,(𝑚−1 ,   𝑛−1) =

1

𝐹1−
𝛼

2
,(𝑛−1 ,   𝑚−1)

 

Assumptions: 

1. Independent random samples are drawn from each of two normally distributed 

populations. 

2. The amount of variability in the two populations is same and can be measured by a 

common varianceσ2, i. e. , σ1
2 = σ2

2 = σ2. 

 

11.5.2 Applications of F-distribution: 

It has the following applications in statistical theory. 

1. To test the equality of two population variances. 

2. To test the significance of an observed multiple correlation coefficient. 

3. To test the linearity of regression. 

4. To test the equality of several means. 

 

11.5.3 The probability curve of F-distribution: 

Curves for different degrees of freedom are as follows: 

 

 
Exercise  

1. What is sampling distribution? Explain standard error in sampling distribution. 

2. Write a note on chi-square distribution. 

3. Mention some applications of t-distribution. 

4. Lists the features of F-distribution. 

5. Given σ2= 9cm2 and n=36, calculate standard error of sample mean. 

6. If P=0.05 and n=60, then find S.E(p). 

7. Sizes of two samples are 50 and 100. Population standard deviations are 20 and 10. 

Compute S.E.(𝑋̅1 − 𝑋̅2). 
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8. Write the uses of standard error. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNIT 12 

 POINT AND INTERVAL ESTIMATION 

12.1 Objective 
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After studying this chapter, we can able to understand one of the important branches of statistical 

inference and one can able to implement estimation technique to estimate true population 

parameter. 

 

12.2 Introduction 

Statistical inference is theory of making decisions about the population parameter from the 

analysis of a sample drawn from that population. It has two branches: Estimation and testing of 

hypothesis.  

 

Estimation is the method of obtaining the most likely value of the population parameter using 

statistic.  

Any statistic (T) which is used to estimate the population parameter is called an estimator and 

the specific value of the estimator is called an estimate. 

There are two types of estimation: point estimation and interval estimation. 

 

Definition of Point estimation: A single value is used to estimate an unknown population 

parameter is called point estimation. 

For example: average height of group of 100 students is 165cms. 

 

12.3 Properties (or characteristics) of estimator: 

The following are some criteria that should be satisfied by a good estimator: 

1. Unbiasedness 

2. Consistency 

3. Efficiency 

4. Sufficiency 

 

12.3.1 UNBIASEDNESS:  

An estimator 𝑇𝑛 = 𝑇(𝑥1, 𝑥2, … … . , 𝑥𝑛)is said to be unbiased estimator of γ(θ) if E(Tn)= γ(θ), for 

all θ ϵ Ө. 

 

Remark: if E(Tn) > θ, Tn is said to be positively biased and if E(Tn) < θ, then Tn is said to be 

negatively biased. The amount of bias b(θ) is given by b(θ) = E(Tn) - γ(θ), θ ϵ Ө. 

 

Example:𝑋1, 𝑋2, … … . , 𝑋𝑛 be a random sample from a normal population N(µ,1). Show that 𝑡 =
1

𝑛
∑ 𝑥𝑖

2𝑛
𝑖=1  is an unbiased estimator of µ2+1. 

Solution: Given E(Xi)=µ, V(Xi)=1, for all i=1,2,3,….,n 

Now, E(Xi)= V(Xi)+ (E(Xi))
2=1+ µ2 

Therefore, 𝐸(𝑡) = 𝐸 (
1

𝑛
∑ 𝑥𝑖

2𝑛
𝑖=1 ) =

1

𝑛
∑ 𝐸(𝑋𝑖

2) =
1

𝑛
∑(1 + 𝜇2) =

𝑛(1+𝜇2)

𝑛
= (1 + 𝜇2). 

Hence t is an unbiased estimator of  µ2+1. 

 

12.3.2 Consistency 
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An estimator Tn = t(x1, x2, ….. , xn) based on a random sample of size n, is said to be consistent 

estimator of  𝛾(𝜃), 𝜃𝜖Θ,if Tn converges to  𝛾(𝜃) in probability                                   i.e., 𝑇𝑛
𝑝
→ 𝛾(𝜃), 𝑎𝑠𝑛 → ∞ 

     OR  

If Tn is said to be consistent estimator of 𝛾(𝜃) if for every ε>0, η>0, there exists a positive integer 

n ≥ m(ε,η) such that 𝑃(|𝑇𝑛 − 𝛾(𝜃)| < 𝜀) → 1 𝑎𝑠𝑛 → ∞  

OR  𝑃(|𝑇𝑛 − 𝛾(𝜃)| ≥ 𝜀) → 0 𝑎𝑠𝑛 → ∞ 

⟹ 𝑃(|𝑇𝑛 − 𝛾(𝜃)| < 𝜀) > 1 − 𝜂𝑓𝑜𝑟𝑎𝑙𝑙𝑛 ≥ 𝑚, where m is some very large value of n. 

 

Theorem 1: Invariance property of consistent estimator: if Tn is a consistent estimator of𝛾(𝜃) 

and 𝜓(𝛾(𝜃)) is a continuous function of 𝛾(𝜃), then 𝜓(𝑇𝑛) is a consistent estimator of 𝜓(𝛾(𝜃)). 

 

Theorem 2: Sufficient conditions for consistency: Let { Tn} be a sequence of estimators such 

that for all𝜃𝜖Θ,   

i. 𝐸𝜃(𝑇𝑛) → 𝛾(𝜃), 𝑎𝑠𝑛 → ∞ 

ii. 𝑉𝜃(𝑇𝑛) → 0 , 𝑎𝑠𝑛 → ∞ 

Then Tn is a consistent estimator of 𝛾(𝜃). 

 

Example: let X1, X2, ….. , Xn be a random sample from N(μ, σ2). Show that sample mean 𝑋̅ is 

unbiased estimator and consistent estimator of μ. 

Solution: Given Xi~ N(μ, σ2) then E(Xi) = μ and V(Xi) = σ2 

Let Tn= 𝑋̅  then 𝐸(𝑇𝑛) = 𝐸(𝑋̅) =
1

𝑛
∑ E(Xi) =

1

𝑛
𝑛𝜇 = 𝜇 

Therefore, 𝑋̅ is an unbiased estimator of μ. 

Also, 𝑉(𝑇𝑛) = 𝑉(𝑋̅) =
1

𝑛2
∑ V(Xi) =

1

𝑛2 𝑛σ2 =
σ2

𝑛
→ 0 𝑎𝑠𝑛 → ∞ 

Therefore, 𝑋̅ is a consistent estimator of μ. 

 

12.3.3 Most efficient estimator: 

Let for large samples two consistent estimators say T1 and T2 be both distributed asymptotically 

normal. If there exist one say T1 whose sampling variance is less than that of the other say T2 then 

T1 is called the most efficient estimator.  

i.e., V (T1) < V (T2) then T1 is more efficient than T2 or T1 is called the most efficient estimator. 

 

12.3.4 Efficiency: If T1 is most efficient estimator with variance 𝜎1
2 and T2 is any other estimator 

with variance 𝜎2
2 then the efficiency E of T2 is defined as 𝐸 =

𝜎1
2

𝜎2
2 < 1, always. 

Example: Let X1,X2 be a random sample from a N(μ, σ2). Find the efficiency of 𝑇 =
1

3
(𝑋1 +

2𝑋2) relative to 𝑋̅ =
1

3
∑ 𝑋𝑖

2
𝑖=1 . Which is relatively more efficient? 

Solution: Given Xi~ N(μ, σ2) 

Then E(Xi) = μ and V(Xi) = σ2 
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Consider  𝑉(𝑇) =
1

32
(𝑉(𝑋1) + 22𝑉(𝑋2)) =

1

9
(𝜎2 + 4𝜎2) =

5𝜎2

9
= 0.555𝜎2 

and 𝑉(𝑋̅) =
1

32
∑ 𝑉(𝑋𝑖)

2
𝑖=1 =

1

9
(2𝜎2) =

2𝜎2

9
= 0.222𝜎2 

Thus 𝐸 =
𝑉(𝑋̅)

𝑉(𝑇)
=

0.222𝜎2

0.555𝜎2 = 0.4 < 1 

Since E<1, therefore, 𝑋̅ is more efficient than T. 

 

12.3.5 SUFFICIENCY 

An estimator is said to be sufficient for a parameter, if it contains all the information in the 

sample regarding the parameter. 

 

Definition (Sufficient estimator): if T= t(x1, x2, ….. , xn) is an estimator of a parameter θ, based 

on a sample x1, x2, ….. , xn of size n form the population with density f(x,θ) such that the 

conditional distribution of x1, x2, ….. , xn given T, is independent of θ, then T is sufficient 

estimator of θ. 

 

Example: let x1, x2, ….. , xn be a random sample from a Bernoulli population with parameter ‘p’, 

0<p<1, i.e., 𝑥𝑖 = {
 1,                        𝑤𝑖𝑡ℎ𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑝

   0,          𝑤𝑖𝑡ℎ𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑞 = 1 − 𝑝
. Find sufficient estimator of p. 

Solution: xi, i=1,2,3,...,n follows Bernoulli distribution with parameter p then the p.m.f of 

Bernoulli distribution is 𝑓(𝑥) = 𝑝𝑥𝑞1−𝑥 , 𝑥 = 0,1; 0 < 𝑝 < 1; 𝑞 = 1 − 𝑝 

Let T= t(x1, x2, ….. , xn) = x1 + x2+ ….. + xn ~ B(n,p) 

This implies P(T = k) = (n
k
)𝑝𝑘𝑞𝑛−𝑘, 𝑘 = 0,1,2, … 𝑛. 

The conditional distribution of (x1, x2, ….. , xn) given T is  

𝑃(𝑥1 ∩ 𝑥2 ∩ … .∩ 𝑥𝑛|𝑇) =
𝑃(𝑥1 ∩ 𝑥2 ∩ … .∩ 𝑥𝑛 ∩ 𝑇)

𝑃(𝑇 = 𝑘)
=

𝑝𝑘𝑞𝑛−𝑘

(n
k

)𝑝𝑘𝑞𝑛−𝑘
=

1

(n
k
)
 

Since this does not depends on parameter ‘p’ 

Therefore 𝑇 = ∑ 𝑥𝑖
𝑛
𝑖=1  is sufficient for ‘p’. 

 

Theorem: Factorization theorem (Neymann): The necessary and sufficient condition for a 

distribution to find sufficient statistic is provided by the factorization theorem due to Neymann. 

Statement: T=t(x) is sufficient for θ if and only if the joint density function L(say), of the sample 

values can be expressed in the form: 𝐿 = 𝑔𝜃[𝑡(𝑥)]. ℎ(𝑥) → (∗) where 𝑔𝜃[𝑡(𝑥)] depends on θ and 

x only through the value of t(x) and h(x) is independent of θ. 

 

Remark: invariance property of sufficient estimator: if T is a sufficient estimator for the 

parameter θ and if Ψ(T) is a one-to-one function of T, then Ψ(T) is sufficient for Ψ(θ). 

 

Example: let x1, x2, ….. , xn be a random sample from N(μ, σ2) population. Find the sufficient 

estimators for μ and σ2. 

Solution: consider θ= (μ, σ2) ; -∞<μ<∞; σ2>0. 
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Then 𝐿 = ∏ 𝑓(𝑥𝑖, 𝜃) = (
1

𝜎√2𝜋
)

𝑛

exp {
−1

2𝜎2
∑ (𝑥𝑖 − 𝜇)2𝑛

𝑖=1 }𝑛
𝑖=1  

= (
1

𝜎√2𝜋
)

𝑛

exp {
−1

2𝜎2
(∑ 𝑥𝑖

2 − 2𝜇

𝑛

𝑖=1

∑ 𝑥𝑖

𝑛

𝑖=1

+ 𝑛𝜇2)} 

= 𝑔𝜃[𝑡(𝑥)]. ℎ(𝑥) 

𝑤ℎ𝑒𝑟𝑒𝑔𝜃[𝑡(𝑥)] = (
1

𝜎√2𝜋
)

𝑛

exp {
−1

2𝜎2
(𝑡2(𝑥) − 2𝜇𝑡1(𝑥) + 𝑛𝜇2)} 

   𝑡(𝑥) = {𝑡1(𝑥), 𝑡2(𝑥)} = (∑ 𝑥𝑖 ,
𝑛
𝑖=1 ∑ 𝑥𝑖

2𝑛
𝑖=1 )&ℎ(𝑥) = 1 

Thus 𝑡1(𝑥) = ∑ 𝑥𝑖
𝑛
𝑖=1  is the sufficient for μ and 𝑡1(𝑥) = ∑ 𝑥𝑖

2𝑛
𝑖=1  is the sufficient for σ2. 

 

12.3.6 Drawback of Point estimation: 

Since no information is available regarding the reliability (closeness to the actual population 

parameter) of point estimation, therefore probability that a single sample statistic actually equals 

the population parameter is very small. For this reason, point estimates are rarely used alone to 

estimate population parameters. Hence, it is better to know the width of values within which the 

population parameters are expected to fall so that reliability of the estimate can be measured.  

 

12.4 Method of estimation: 

So far, we have studied the rules and requisites of a good estimator. Now we shall briefly discuss 

some of the important methods for obtaining estimators such as: 

 Method of moments 

 Method of maximum likelihood estimation. 

 

12.4.1 Method of moments: Let 𝑓(𝑋𝑖: 𝜃1, 𝜃2, … , 𝜃𝑛) be the density function of the parent 

population with n parameters𝜃1, 𝜃2, … , 𝜃𝑘 . If 𝜇𝑟
′  denotes the rth moment about origin then 𝜇𝑟

′ =

𝐸(𝑋𝑟) = ∫ 𝑥𝑟∞

−∞
𝑓(𝑥: 𝜃1, 𝜃2, … , 𝜃𝑛)𝑑𝑥, 𝑟 = 1,2, … . , 𝑘 → (1) 

 

Note. Let Xi, i=1,2,....,n be a random sample of size n from the given population. The method od 

moments consists in solving k-equations (1) for 𝜃1, 𝜃2, … , 𝜃𝑘 in terms of 𝜇1
′ , 𝜇2

′ , … . , 𝜇𝑘
′  and then 

replacing these moments(𝜇𝑟
′ ) by the sample moments(𝑚𝑟

′ ).i.e., 𝜃𝑖̂ = 𝜃𝑖(𝜇1
′ , 𝜇2

′ , … . , 𝜇𝑘
′ ) =

𝜃𝑖(𝑚1
′ , 𝑚2

′ , … . , 𝑚𝑘
′ ), 𝑓𝑜𝑟𝑎𝑙𝑙𝑖 = 1,2, … . , 𝑘. 

 

Example: obtain the moment estimator of Poisson distribution with parameter ‘λ’. 

Solution: W.K.T the p.m.f of Poisson distribution is 

𝑓(𝑥) =
𝑒−𝜆𝜆𝑥

𝑥!
, 𝑥 = 0,1,2, … . ;  𝜆 ≥ 0, 

and the mean of Poisson distribution is λ. Therefore, 𝜇1
′ = 𝐸(𝑋) = 𝜆 

Thus , 𝑚1
′ = 𝑋̅ which is the sample mean, implies that 𝜆̂ = 𝑋̅ is the moment estimator of λ. 

 

Example: Obtain the moment estimator of Normal distribution with parameter μ and σ2. 
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Solution: if X~ N(μ, σ2) then  

𝜇1
′ = 𝐸(𝑋) = 𝜇𝑎𝑛𝑑𝜇2

′ = σ2 = 𝐸(𝑋 − 𝜇̂)2 =
1

𝑛
∑(𝑥𝑖 − 𝜇̂)2

𝑛

𝑖=1

=
1

𝑛
∑(𝑥𝑖 − 𝑥̅)2

𝑛

𝑖=1

 

Therefore, moment estimator of μ is 𝜇̂ = 𝜇1
′ = 𝑋̅, the sample mean and 

Moment estimator of σ2is σ̂
2 = 𝑠2 =

1

𝑛
∑ (𝑥𝑖 − 𝑥̅)2𝑛

𝑖=1 , the sample variance. 

 

Example: obtain the moment estimator of Exponential distribution with parameter ‘θ’. 

Solution: W.K.T the p.d.f of Exponential distribution is 𝑓(𝑥) = 𝜃𝑒−𝜃𝑥 , 𝑥 > 0;  𝜃 > 0 and the 

mean of Exponential distribution is 1/θ. 

Therefore, 𝜇1
′ = 𝐸(𝑋) =

1

𝜃
⇒ 𝑋̅ =

1

𝜃
 

Thus , 𝜇1
′ = 𝑋̅ =

1

𝜃
 which is the sample mean. 

Which implies that 𝜃 =
1

𝑋̅
 is the moment estimator of θ. 

 

12.4.2 Maximum Likelihood Estimation(MLE): 

Definition of likelihood function: let x1, x2, ….. , xn be the value of a random sample from a 

Bernoulli population with parameter θ. The likelihood function of the sample is given by 

𝐿(𝜃; 𝑥1, 𝑥2, … . , 𝑥𝑛) = 𝐿(𝜃 ; 𝑋) = 𝑓(𝑥1, 𝑥2, … . , 𝑥𝑛; 𝜃)for values of θ within the given domain. 

If Xi’s are independent, then𝐿(𝜃) = ∏ 𝑓(𝑥𝑖, 𝜃)𝑛
𝑖=1 . 

 

Definition of Maximum likelihood estimation: An estimator 𝜃 is said to be MLE of unknown 

parameter θ then it should maximize the likelihood function 𝐿(𝜃 ; 𝑋) i.e., θ̂ = SupθϵΘL(θ ; xi) =

L(θ̂)i. e., L > L(θ). 

 

Note. If the likelihood function 𝐿(𝜃 ; 𝑋) is differentiable with respect to θ, then one can use usual 

differentiation method i.e., 
∂logL

∂θ
= 0 → (1)and

∂2logL

∂θ
< 0 → (2) then from (1) we get the value 

of θ. 

 If 𝐿(𝜃 ; 𝑋) is not differentiable with respect to θ then we use ordered sample to estimate θ 

or indicator function. 

12.4.3 Properties of MLE:  

1. MLE’s are always consistent but need not be unbiased estimator. 

2. MLE need not be unique. 

3. If MLE exists, it is most efficient estimator in the class of such estimators. 

4. If a sufficient estimator exists, it is a function of MLE. 

 

Example: If X~ N(μ, σ2) , then find MLE of μ and σ2. 

Solution: Given X~ N(μ, σ2) then the p.d.f of Normal distribution is f(x) =

1

σ√2π
e

−
1

2σ2(x−μ)2

, −∞ < x < ∞;  −∞ < μ < ∞; σ > 0 



 

 

 

 

149 

Then the likelihood function is L = ∏ f(xi) = ∏
1

σ√2π
e

−
1

2σ2(x−μ)2

=n
i=1

n
i=1

(
1

σ√2π
)

n

exp [−
1

2σ2
∑ (xi − μ)2n

i=1 ] 

= (
1

σ2π
)

n
2⁄

exp [−
1

2σ2
∑(xi − μ)2

n

i=1

] 

By taking logarithm on both sides, we get 

logL = −
n

2
log(2π) −

n

2
log(σ2) −

1

2σ2
∑(xi − μ)2

n

i=1

 

The simultaneous estimation of μ and σ2are 

 

𝜕𝑙𝑜𝑔𝐿

𝜕𝜇
= 0 ⟹

𝜕 [−
𝑛

2
log(2𝜋) −

𝑛

2
log(𝜎2) −

1

2𝜎2
∑ (𝑥𝑖 − 𝜇)2𝑛

𝑖=1 ]

𝜕𝜇
= 0 

⟹ 𝜇̂ =
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
= 𝑋,̅ 𝑡ℎ𝑒𝑠𝑎𝑚𝑝𝑙𝑒𝑚𝑒𝑎𝑛. 

          and   
𝜕𝑙𝑜𝑔𝐿

𝜕𝜎2 = 0 ⟹
𝜕[−

𝑛

2
log(2𝜋)−

𝑛

2
log(𝜎2)−

1

2𝜎2 ∑ (𝑥𝑖−𝜇)2𝑛
𝑖=1 ]

𝜕𝜎2 = 0 

⟹ 𝜎̂2 =
∑ (𝑥𝑖 − 𝜇̂)2𝑛

𝑖=1

𝑛
=

∑ (𝑥𝑖 − 𝑋̅)2𝑛
𝑖=1

𝑛
= 𝑠2, 𝑡ℎ𝑒𝑠𝑎𝑚𝑝𝑙𝑒𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒. 

Therefore the MLE of μ and σ2 is 𝜇̂ = 𝑋̅ and 𝜎̂2 = 𝑠2. 

 

Example: If X~ P(λ), then find MLE of λ. 

Solution: Given X~ P(λ) then the p.m.f of Poisson distribution is 

𝑓(𝑥) =
𝑒−𝜆𝜆𝑥

𝑥!
, 𝑥 = 0,1,2, … ;  𝜆 > 0. 

Then the likelihood function is 𝐿 = ∏ 𝑓(𝑥𝑖)
𝑛
𝑖=1 = ∏

𝑒−𝜆𝜆𝑥𝑖

𝑥𝑖!

𝑛
𝑖=1 =

(𝑒−𝜆)
𝑛

𝜆
∑ 𝑥𝑖

𝑛
𝑖=1

∏ 𝑥𝑖!𝑛
𝑖=1

 

By taking logarithm on both sides, we get 

𝑙𝑛𝐿 = −𝑛𝜆 + ∑ 𝑥𝑖

𝑛

𝑖=1

ln(𝜆) − ln (∏ 𝑥𝑖!

𝑛

𝑖=1

) 

𝜕𝑙𝑜𝑔𝐿

𝜕𝜆
= 0 ⟹ −𝑛 +

1

𝜆
∑ 𝑥𝑖

𝑛

𝑖=1

− 0 = 0 

   ⟹ 𝜆̂ =
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
= 𝑋̅ , which is the MLE of 𝜆. 

Example: Let X follows exponential distribution with mean θ, then find MLE of θ. 

Solution: W.K.T the p.d.f of Exponential distribution is 𝑓(𝑥) =
1

𝜃
𝑒−𝑥

𝜃⁄ , 𝑥 > 0;  𝜃 > 0. 

Then the likelihood function is 𝐿 = ∏ 𝑓(𝑥𝑖)
𝑛
𝑖=1 = ∏

1

𝜃

𝑛
𝑖=1 𝑒−

𝑥𝑖
𝜃⁄  

By taking logarithm on both sides, we get 

𝑙𝑛𝐿 = −𝑛𝑙𝑛θ −
∑ 𝑥𝑖

𝑛
𝑖=1

θ
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𝜕𝑙𝑜𝑔𝐿

𝜕θ
= 0 ⟹ −

𝑛

θ
+

∑ 𝑥𝑖
𝑛
𝑖=1

θ
2 = 0 

⟹ θ̂ =
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
= 𝑋̅, which is the MLE of θ. 

 

Exercise  

1. Let x1,x2,....,xn be a random sample of size n drawn from a population with mean µ and 

variance σ2. Obtain an unbiased of µ2. 

2. Let X1, X2, X3& X4 be independent random variables such that  

E(Xi) = μ and V(Xi) = σ2 for i = 1,2,3,4. if Y =
X1+X2+X3+X4

4
 and Y =

X1+2X2+X3−X4

4
. Examine whether Y and Z are unbiased estimator of µ? What is efficiency 

of Y relative to Z? 

3. If X1, X2, X3,...., Xn is a random sample obtained from the density function 𝑓(𝑥, 𝜃) =

{
1,    𝜃 < 𝑥 < 𝜃 + 1
0,         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

. Show that the sample mean 𝑋̅ is an unbiased and consistent 

estimator of 𝜃 +
1

2
. 

4. If the number od weekly accidents on a mile street of a particular road follows Poisson 

distribution with λ. Then find the moment estimator and MLE of parameter λ on the basis 

of the following data. 

No. of accidents 0 1 2 3 4 5 6 

Frequency 10 15 14 9 6 2 1 

5. If a random sampling from normal distribution with mean µ and variance σ2. Find the 

MME and MLE for µ and σ2 from the following data: 3, 8, 16, 12, 10, 4, 5, 1. 

 

12.5 Interval Estimation 

After studying this part, we can able to understand the concept of confidence interval and we are 

able to compute and interpret confidence interval for various measures.  

One of the main objectives of statistics is to draw inferences about a population from the analysis 

of a sample drawn from that population. Two important problems in statistical inference are: 

1. Estimation 

2. Testing of hypothesis 

 

Some basic definitions:  

 Population: The totality of units under consideration is called population. It may be finite 

or infinite population. 

 Sample: A part or a portion of population is called sample. 

 Parameter: A statistical constant of the population is called parameter. 

 Statistic: Any function of the random sample x1, x2,….,xn that are being observed, say 

Tn(X) = Tn( x1, x2,….,xn )  is called a statistic.  

 Notations of different population parameter and sample statistic: 
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Population parameter Sample statistic 

Population mean - µ  Sample mean - 𝑥̅ 

Population variance – σ2 Sample variance – S2 

Population standard deviation – σ Sample standard deviation – S 

Population proportion- P Sample proportion – p 

Population size – N Sample size – n 

 Parameter space: The set of all possible values of population parameter is called the 

parameter space. It is denoted by Ө. 

For example, if X⁓N (µ, σ2), then the parameter space is Ө= {(µ, σ2): - ∞<µ<∞, 

σ2≥0)}. 

 Sample space: The set of all possible values of samples are called sample space. It is 

denoted by S. 

 Estimation: It is a method of obtaining the most likely values of population parameter 

using statistic. 

 Estimator: If a statistic is used to estimate an unknown parameter of the distribution, then 

it is called an estimator. 

 Estimate: A particular value of an estimator, say Tn(X) is called an estimate of θ. 

 The statistic, say Tn(X) whose distribution concentrates as closely as possible near the 

true value of the parameter may be regarded as the best estimate.  

 There are two types of estimation: 1) point estimation, 2) interval estimation. 

 Point estimation: If a single value is used to estimate population parameter, then the 

estimation is called point estimation. 

 Interval estimation: If an interval [c1, c2] is used to estimate the population parameter, 

then it is called interval estimation. It is also called as confidence interval. 

Example: the set of 80 students will get first class with mean marks between 60 to 70. 

 Let t = t( x1, x2,….,xn), a function of sample valuebe an estimate of population parameter 

θ, with the sampling distribution given by g(t,θ). Here we make some reasonable 

probability statement about unknown parameter θ in the population by the technique of 

confidence interval. 

 Let us determine two constants say c1 and c2 with ‘α’ level of significance (either 5% or 

1%) such that: 

𝑃(𝑐1 < 𝜃 < 𝑐2) = 1 − 𝛼  → (1) 

The quantities c1 and c2 , so determined are known as confidence limits. 

 Confidence interval: An interval [c1, c2] within which the unknown value of the 

population parameter is expected to lie, is called the confidence interval. 

 Confidence limits: A boundary values c1 and c2 of the confidence interval are known as 

confidence limits. It is also called as fiducial limits or probable limits. 

 Confidence coefficient: The probability that an interval [c1, c2] within which the 

unknown value of the population parameter is expected to lie, is called the confidence 

coefficient. It is denoted by (1-α). 



 

 

 

 

152 

 Level of significance: It is the maximum size of rejecting the null hypothesis when it is 

actually true. It is denoted by α.  

Thus, if we take α=0.05 (or 0.01), we shall get 95% ( or 99%) confidence limits. 

To find c1 and c2: let T1 and T2 be two statistic such that  

P(T1 < 𝜃 < T2) = 1 − α where c1 and c2 is considered as two statistic T1 and T2. 

 

12.5.1 Confidence interval for mean (when variance is known):  

Consider the interval estimate of µ. If a sample is selected from a normal population with mean µ 

and standard deviation σ for n is sufficiently large (or for large sample). Then  

 𝑍 =  
𝑋̅−𝜇

𝜎
~𝑁(0,1) and 𝑃 (−𝑍𝛼

2
< 𝑍 < 𝑍𝛼

2
) = 1 − 𝛼(*) 

By substituting Z in (*) and on simplification, we get 100 (1-α) % confidence interval for 

unknown population mean (µ), that is 

𝑃 (𝑋̅ − 𝑍𝛼

2
(

𝜎

√𝑛
) < 𝜇 < 𝑋̅ + 𝑍𝛼

2
(

𝜎

√𝑛
)) = 1 − 𝛼 

And 𝑋̅ ± 𝑍𝛼

2
(

𝜎

√𝑛
) are 100(1-α) % confidence limits for population mean(µ). 

 

Example: If a random sample of size n=64 from a normal population with the variance σ2 = 185 

has the mean 𝑋̅ = 64.3. Construct a 95% confidence interval for the population mean µ. 

Solution: Given n=64, σ2 = 185, 𝑋̅ = 64.3, α=0.05 

We know that 100 (1-α) % confidence interval for population mean(µ) is  

𝑃 (𝑋̅ − 𝑍𝛼

2
(

𝜎

√𝑛
) < 𝜇 < 𝑋̅ + 𝑍𝛼

2
(

𝜎

√𝑛
)) = 1 − 𝛼 

For α=0.05, the critical value is 𝑍𝛼

2
= 𝑍0.025 = 1.96 ( from standard normal table) 

Lower limit= 𝑋̅ − 𝑍𝛼

2
(

𝜎

√𝑛
) = 64.3 − 1.96 (

13.601

√64
) = 60.967 and  

Upper limit= 𝑋̅ + 𝑍𝛼

2
(

𝜎

√𝑛
) = 64.3 + 1.96 (

13.601

√64
) = 67.632 

Therefore, 95% confidence interval for the population mean µ is (60.967, 67.632). 

 

12.5.2 Confidence interval for difference of means (for large samples):  

If 𝑋̅1𝑎𝑛𝑑𝑋̅2 are the means of independent random samples of size n1 and n2 from normal 

population having the means µ1 and µ2 and the variances 𝜎1
2𝑎𝑛𝑑𝜎2

2. Then 𝑋̅1 − 𝑋̅2 is a random 

variable having a normal distribution with the mean µ= µ1 - µ2 and variance σ2 = 
𝜎1

2

𝑛1
+

𝜎2
2

𝑛2
. 

It follows that 𝑍 =  
|𝑋̅1−𝑋̅2|−(𝜇1−𝜇2)

√
𝜎1

2

𝑛1
+

𝜎2
2

𝑛2

~𝑁(0,1) and 𝑃 (−𝑍𝛼

2
< 𝑍 < 𝑍𝛼

2
) = 1 − 𝛼(*) 

By substituting Z in (*) and on simplification, we get 100 (1-α) % confidence interval for 

difference of means, that is 
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𝑃 (|𝑋̅1 − 𝑋̅2| − 𝑍𝛼

2
(√

𝜎1
2

𝑛1
+

𝜎2
2

𝑛2

) < 𝜇1 − 𝜇2 < |𝑋̅1 − 𝑋̅2| + 𝑍𝛼

2
(√

𝜎1
2

𝑛1
+

𝜎2
2

𝑛2

)) = 1 − 𝛼 

And |𝑋̅1 − 𝑋̅2| ± 𝑍𝛼

2
(√

𝜎1
2

𝑛1
+

𝜎2
2

𝑛2
) are 100(1-α) % confidence limits for difference of means. 

Example: Following data refers to mean daily wages of workers of two factory A and B. 

construct95% confidence limits for mean daily wages of workers. 

Factory No. of workers Mean daily wages (Rs.) S.D (Rs.) 

A 200 195 20 

B 450 200 30 

Solution: Given𝑋̅1 = 195, 𝑋̅2 = 200,  n1 =200, n2 =450, 𝜎1 = 20,   𝜎2 = 30, α=0.05 

We know that 100 (1-α) % confidence interval for difference of means, that is 

𝑃 (|𝑋̅1 − 𝑋̅2| − 𝑍𝛼

2
(√

𝜎1
2

𝑛1
+

𝜎2
2

𝑛2

) < 𝜇1 − 𝜇2 < |𝑋̅1 − 𝑋̅2| + 𝑍𝛼

2
(√

𝜎1
2

𝑛1
+

𝜎2
2

𝑛2

)) = 1 − 𝛼 

For α=0.05, the critical value is 𝑍𝛼

2
= 𝑍0.025 = 1.96 ( from standard normal table) 

Lower limit= |𝑋̅1 − 𝑋̅2| − 𝑍𝛼

2
(√

𝜎1
2

𝑛1
+

𝜎2
2

𝑛2
) = |195 − 200| − 1.96 (√

202

200
+

302

450
) = 1.08 

Upper limit= |𝑋̅1 − 𝑋̅2| + 𝑍𝛼

2
(√

𝜎1
2

𝑛1
+

𝜎2
2

𝑛2
) = |195 − 200| + 1.96 (√

202

200
+

302

450
) = 8.92 

Therefore, 95% confidence limits for difference of means is 1.08 and 8.92. 

 

12.5.3 Confidence interval for mean (when variance is not known):  

In order to construct an appropriate 100(1-α) % confidence interval for µ when σ is unknown but 

n≥30, we replace σ by the value of the sample standard deviation(s) and proceed large sample 

case. However, when we are dealing with a sample from a normal population and n< 30, a 100(1-

α) % confidence interval for µ can be constructed by making use of the fact that the random 

variable,  

𝑡 =  
𝑋̅−𝜇

𝑠
√𝑛−1⁄

~𝑡(𝑛−1), where t follows t-distribution with (n-1) degrees of freedom and  

 𝑃 (−𝑡𝛼

2
,(𝑛−1) < 𝑡 < 𝑡𝛼

2
,(𝑛−1)) = 1 − 𝛼   (*) 

By substituting t in (*) and on simplification, we get 100 (1-α) % confidence interval for 

unknown population mean (µ) for small samples, that is  

𝑃 (𝑋̅ − 𝑡𝛼

2
,(𝑛−1) (

𝑠

√𝑛 − 1
) < 𝜇 < 𝑋̅ + 𝑡𝛼

2
,(𝑛−1) (

𝑠

√𝑛 − 1
)) = 1 − 𝛼 

And 𝑋̅ ± 𝑡𝛼

2
,(𝑛−1) (

𝑠

√𝑛−1
) are 100(1-α) % confidence limits for population mean(µ) for small 

samples. 
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Example: A paint manufacturer wants to determine the average drying time of a new interior 

wall paint. If for 12 test areas of equal size he obtained a mean drying time of 66.3minutes and a 

S.D of 8.4minutes, construct a 95% confidence interval for the true mean µ. 

Solution: Given n=12 (small sample), s = 8.4, 𝑋̅ = 66.3, α=0.05 

We know that 100 (1-α) % confidence interval for mean(µ) is  

𝑃 (𝑋̅ − 𝑡𝛼

2
,(𝑛−1) (

𝑠

√𝑛 − 1
) < 𝜇 < 𝑋̅ + 𝑡𝛼

2
,(𝑛−1) (

𝑠

√𝑛 − 1
)) = 1 − 𝛼 

For α=0.05, the critical value is 𝑡𝛼

2
,(𝑛−1) = 𝑡0.025,11 = 2.23 ( from t-distribution table) 

Lower limit= 𝑋̅ − 𝑡𝛼

2
,(𝑛−1) (

𝑠

√𝑛−1
) = 66.3 − 2.23 (

8.4

√11
) = 60.652 and  

Upper limit= 𝑋̅ + 𝑡𝛼

2
,(𝑛−1) (

𝑠

√𝑛−1
) = 66.3 − 2.23 (

8.4

√11
) = 71.947 

Therefore, 95% confidence interval for the population mean µ is (60.652, 71.947). 

 

12.5.4 Confidence interval for difference of means (for small samples, when variance is not 

known):  

The procedure of estimating the difference between two means when 𝜎1
2𝑎𝑛𝑑𝜎2

2 are unknown and 

sample sizes are small. If 𝜎1
2 = 𝜎2

2 = 𝜎2, a point estimate of the unknown common variances. 

Pooled estimator is denoted by 𝑆𝑝
2, we write 𝑆𝑝

2 =
𝑛1𝑠1

2+𝑛2𝑠2
2

𝑛1+𝑛2−2
. Then the test statistic is  

𝑡 =  
|(𝑋̅1−𝑋̅2)|−(𝜇1−𝜇2)

√𝑠𝑝
2(

1

𝑛1
+

1

𝑛2
)

~𝑡(𝑛1+𝑛2−2), where t follows t-distribution with (𝑛1 + 𝑛2 − 2)degrees of 

freedom and  𝑃 (−𝑡𝛼

2
,(𝑛1+𝑛2−2) < 𝑡 < 𝑡𝛼

2
,(𝑛1+𝑛2−2)) = 1 − 𝛼(*) 

By substituting t in (*) and on simplification, we get 100 (1-α) % confidence interval for 

difference of means for small samples, that is  

𝑃 (|(𝑋̅1 − 𝑋̅2)| − 𝑡𝛼

2
 ,(𝑛1+𝑛2−2)

(√𝑠𝑝
2 (

1

𝑛1
+

1

𝑛2
)) < 𝜇1 − 𝜇2

< |(𝑋̅1 − 𝑋̅2)| + 𝑡𝛼

2
 ,(𝑛1+𝑛2−2)

(√𝑠𝑝
2 (

1

𝑛1
+

1

𝑛2
))) = 1 − 𝛼 

And |(𝑋̅1 − 𝑋̅2)| ± 𝑡𝛼

2
 ,(𝑛1+𝑛2−2) (√𝑠𝑝

2 (
1

𝑛1
+

1

𝑛2
)) are 100(1-α) % confidence limits for difference 

of means for small samples. 

 

Example: A study has been made to compare the nicotine contents of two brands of cigarettes. 

Ten cigarettes of brand A has an average nicotine content of 3.1mg with a S.D of 0.5mg, while 

eight cigarettes of brand B has an average nicotine content of 2.7mg with a S.D of 0.7mg, 

assuming that the two sets of data are random samples from normal populations with equal 

variances. Construct a 95% confidence interval for the true difference in the average nicotine 

content of the two brands of cigarettes. 
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Solution: Given 𝑋̅1 = 3.1, 𝑋̅2 = 2.7,  n1 =10, n2 =8, 𝑠1 = 0.5,   𝑠2 = 0.7, α=0.05 

We know that 100 (1-α) % confidence interval for difference of means for small samples, that is 

𝑃 (|(𝑋̅1 − 𝑋̅2)| − 𝑡𝛼

2
,(𝑛1+𝑛2−2)

(√𝑠𝑝
2 (

1

𝑛1
+

1

𝑛2
)) < 𝜇1 − 𝜇2

< |(𝑋̅1 − 𝑋̅2)| + 𝑡𝛼

2
,(𝑛1+𝑛2−2)

(√𝑠𝑝
2 (

1

𝑛1
+

1

𝑛2
))) = 1 − 𝛼 

For α = 0.05, the critical value is 𝑡𝛼

2
,(𝑛1+𝑛2−2) = 𝑡0.025,16 = 2.120 ( from t-distribution table) and  

𝑆𝑝
2 =

𝑛1𝑠1
2+𝑛2𝑠2

2

𝑛1+𝑛2−2
=

10(0.25)+8(0.49)

10+8−2
= 0.401 

Lower limit = |(𝑋̅1 − 𝑋̅2)| − 𝑡𝛼

2
,(𝑛1+𝑛2−2) (√𝑠𝑝

2 (
1

𝑛1
+

1

𝑛2
)) 

= |(3.1 − 2.7)| − 2.120 (√0.401 (
1

10
+

1

8
)) = −0.236 , and  

Upper limit = |(𝑋̅1 − 𝑋̅2)| − 𝑡𝛼

2
,(𝑛1+𝑛2−2) (√𝑠𝑝

2 (
1

𝑛1
+

1

𝑛2
)) 

= |(3.1 − 2.7)| + 2.120 (√0.401 (
1

10
+

1

8
)) = 1.036 

Therefore, 95% confidence interval for difference of means for small sample is (-0.236, 1.036). 

12.5.5 Confidence interval for population proportion(P): 

A point estimate of the proportion ‘p’ in a binomial experiment is given by the statistic p=x/n, 

where x=number of successes in n-trials. By central limit theorem, for sufficiently large, 𝑝̂ is 

approximately normally distributed with mean 𝜇 = 𝐸(𝑝̂) = 𝐸 (
𝑋

𝑛
) =

𝑛𝑃

𝑛
= 𝑃 and variance 𝜎2 =

𝑉 (
𝑋

𝑛
) =

𝑛𝑃𝑄

𝑛2 =
𝑃𝑄

𝑛
.Therefore the test statistic is  

𝑍 =  
𝑝−𝑃

√𝑝𝑞̂
𝑛⁄

~𝑁(0,1) and 𝑃 (−𝑍𝛼

2
< 𝑍 < 𝑍𝛼

2
) = 1 − 𝛼(*) 

By substituting Z in (*) and on simplification, we get 100 (1-α) % confidence interval for 

unknown population proportion(P), that is 

𝑃 (𝑝̂ − 𝑍𝛼

2
(√𝑝̂𝑞̂

𝑛⁄ ) < 𝑃 < 𝑝̂ + 𝑍𝛼

2
(√𝑝̂𝑞̂

𝑛⁄ )) = 1 − 𝛼 

And 𝑝̂ ± 𝑍𝛼

2
(√𝑝̂𝑞̂

𝑛⁄ ) are 100(1-α) % confidence limits for population proportion(P). 

 

Example: Let p equal to the proportion of Indians who select jogging as one of their recreational 

activities. If 1497 out of a random sample of 5757 selected jogging, find an approximate 95% 

confidence interval for p.  
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Solution:Given n=5757, x=1497, 𝑝 =
𝑥

𝑛
=

1497

5757
= 0.26 = 𝑝̂, 𝑞̂ = 1 − 0.26 = 0.74, α=0.05 

We know that 100 (1-α) % confidence interval for population proportion(P) is  

𝑃 (𝑝̂ − 𝑍𝛼

2
(√𝑝̂𝑞̂

𝑛⁄ ) < 𝑃 < 𝑝̂ + 𝑍𝛼

2
(√𝑝̂𝑞̂

𝑛⁄ )) = 1 − 𝛼 

For α=0.05, the critical value is 𝑍𝛼

2
= 𝑍0.025 = 1.96 ( from standard normal table) 

Lower limit= 𝑝̂ − 𝑍𝛼

2
(√𝑝̂𝑞̂

𝑛⁄ ) = 0.26 − 1.96 (√
0.26∗0.74

5757
) = 0.248 and  

Upper limit= 𝑝̂ + 𝑍𝛼

2
(√𝑝̂𝑞̂

𝑛⁄ ) = 0.26 + 1.96 (√
0.26∗0.74

5757
) =0.271 

Therefore, 95% confidence interval for the population proportion is (0.248, 0.271). 

 

12.5.6 Confidence interval for difference of proportions: 

Given a random sample of size n from a normal population, we can obtain 100 (1-α) % 

confidence interval for P1-P2 can be established by considering the sampling distribution of p1-p2. 

P1 and P2 are approximately normally distributed with mean µ=P1-P2 and variance σ2 = 
𝑃1𝑄1

𝑛1
+

𝑃2𝑄2

𝑛2
 respectively. By choosing independent samples from the two populations, P1 and P2 will be 

independent. Therefore, the test statistic is  

𝑍 =  
(𝑝1−𝑝2)−(𝑃1−𝑃2)

√
𝑝̂1𝑞̂1

𝑛1
+

𝑝̂2𝑞̂2
𝑛2

~𝑁(0,1)  where 𝑝̂1 =
𝑥1

𝑛1
, 𝑝̂2 =

𝑥2

𝑛2
, 𝑞̂1 = 1 − 𝑝̂1, 𝑞̂2 = 1 − 𝑝̂2and 𝑃 (−𝑍𝛼

2
<

𝑍 < 𝑍𝛼

2
) = 1 − 𝛼(*)   

By substituting Z in (*) and on simplification, we get 100 (1-α) % confidence interval for 

difference of proportions, that is 

𝑃 {|𝑝̂1 − 𝑝̂2| − 𝑍𝛼

2
√

𝑝̂1𝑞̂1

𝑛1
+

𝑝̂2𝑞̂2

𝑛2
< (𝑃1 − 𝑃2) < |𝑝̂1 − 𝑝̂2| + 𝑍𝛼

2
√

𝑝̂1𝑞̂1

𝑛1
+

𝑝̂2𝑞̂2

𝑛2

} = 1 − 𝛼 

And |𝑝̂1 − 𝑝̂2| ± 𝑍𝛼

2
(√

𝑝1𝑞̂1

𝑛1
+

𝑝2𝑞̂2

𝑛2
) are 100(1-α) % confidence limits for difference of 

proportions. 

 

Example: A survey of 436 workers showed that 192 of them said that it was seriously unethical 

to monitor employee email. When 121 senior-level bosses were surveyed, 40 said that it is 

seriously unethical to monitor employee email (based on data from a Gallup poll). Construct 95% 

confidence interval of the difference between two population proportion.  

Solution: Given n1=436, n2=121, x1=192, x2=40, 𝑝̂1 =
𝑥1

𝑛1
=

192

436
= 0.440, 𝑝̂2 =

𝑥2

𝑛2
=

40

121
=

0.331 , 𝑞̂1 = 1 − 𝑝̂1 = 1 − 0.440 = 0.560, 𝑞̂2 = 1 − 𝑝̂2 = 1 − 0.331 = 0.669 

We know that 100 (1-α) % confidence interval for difference of proportions is 
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𝑃 ((𝑝̂1 − 𝑝̂2) − 𝑍𝛼

2
(√

𝑝̂1𝑞̂1

𝑛1
+

𝑝̂2𝑞̂2

𝑛2

) <  (𝑃1 − 𝑃2) < (𝑝̂1 − 𝑝̂2) + 𝑍𝛼

2
(√

𝑝̂1𝑞̂1

𝑛1
+

𝑝̂2𝑞̂2

𝑛2

))

= 1 − 𝛼 

For α=0.05, the critical value is 𝑍𝛼

2
= 𝑍0.025 = 1.96 ( from standard normal table) 

Lower limit = (𝑝̂1 − 𝑝̂2) − 𝑍𝛼

2
(√

𝑝1𝑞̂1

𝑛1
+

𝑝2𝑞̂2

𝑛2
) = ((0.440 − 0.331) −

1.96 (√
0.440∗0.560

436
+

0.331∗0.669

121
) = 0.032 and  

Upper limit = (𝑝̂1 − 𝑝̂2) + 𝑍𝛼

2
(√

𝑝1𝑞̂1

𝑛1
+

𝑝2𝑞̂2

𝑛2
) = ((0.440 − 0.331) +

1.96 (√
0.440∗0.560

436
+

0.331∗0.669

121
) = 0.186 

Therefore, 95% confidence interval of difference of two population proportion is (0.032, 0.186). 

 

12.5.7 Confidence interval for population variance(σ2): 

If a sample size of n is drawn from a normal population with variance σ2 and the sample variance 

s2 is computed, we obtain a value of the statistic S2. This computed variance will be used as a 

point estimate of σ2. Hence the statistic S2is called an estimator of σ2. An interval estimate of σ2 

can be established by using the test statistic 𝒳2 =
𝑛𝑠2

𝜎2  ~𝒳(𝑛−1)
2 , where 𝒳2 follows chi-square 

distribution with (n-1) degrees of freedom and 

  𝑃 (𝒳2
1−

𝛼

2
< 𝒳2 < 𝒳2𝛼

2
) = 1 − 𝛼     (*) 

where  𝒳2
1−

𝛼

2
𝑎𝑛𝑑𝒳2𝛼

2
 are the table values of chi-square distribution with (n-1) degrees of 

freedom. By substituting 𝒳2 in (*) and on simplification, we get 100 (1-α) % confidence interval 

for population variance, that is 

𝑃 (
𝑛𝑠2

𝒳2𝛼

2

< 𝜎2 <
𝑛𝑠2

𝒳2
1−

𝛼

2

) = 1 − 𝛼 

And 
𝑛𝑠2

𝒳2𝛼
2

,
𝑛𝑠2

𝒳2
1−

𝛼
2

    are 100(1-α) % confidence limits for population variance. 

 

Example: In 16 tests runs the gasoline consumption of an experimental engine had a standard 

deviation of 2.2gallons. construct a 99% confidence interval for σ2 measuring the true variability 

of gasoline consumption of the engine. 

Solution: Given n=16, s=2.2, s2=4.840, α=0.01 

We know that 100 (1-α) % confidence interval for population variance is 

𝑃 (
𝑛𝑠2

𝒳2𝛼

2
,(𝑛−1)

< 𝜎2 <
𝑛𝑠2

𝒳2
1−

𝛼

2
,(𝑛−1)

) = 1 − 𝛼 
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From chi-square table, 𝒳2
1−

𝛼

2
,(𝑛−1) = 𝒳2

0.995,15 = 4.601 𝑎𝑛𝑑𝒳2𝛼

2
,(𝑛−1) = 𝒳2

0.005,15 = 32.801 

Lower limit=
𝑛𝑠2

𝒳2𝛼
2

,(𝑛−1)

=
16×4.840

32.801
= 2.360 

Upper limit=
𝑛𝑠2

𝒳2
1−

𝛼
2

,(𝑛−1)

=
16×4.840

4.601
= 16.831 

Therefore, 99% confidence interval for population variance is (2.360, 16.831). 

 

12.5.8 Confidence interval for the ratio of two population variances: 

A point estimate of the ration of two population variances 
𝜎1

2

𝜎2
2 is given by the ratio 

𝑠1
2

𝑠2
2 of the sample 

variances. If 𝜎1
2𝑎𝑛𝑑𝜎2

2 are the variances of normal distribution, we can establish an interval 

estimate of  
𝜎1

2

𝜎2
2  by suing the test statistic 

𝐹 =

𝑠1
2

𝜎1
2⁄

𝑠2
2

𝜎2
2⁄

=
𝑠1

2𝜎2
2

𝑠2
2𝜎1

2 𝑎𝑛𝑑𝑃(𝐹1−
𝛼

2
,(𝑛1−1 ,   𝑛2−1) < 𝐹 < 𝐹𝛼

2
,(𝑛1−1 ,   𝑛2−1)) = 1 − 𝛼(*), where  

𝐹1−
𝛼

2
,(𝑛1−1 ,   𝑛2−1)𝑎𝑛𝑑𝐹𝛼

2
,(𝑛1−1 ,   𝑛2−1) are the table values of F-distribution with (n1-1,  n2-1)  

degrees of freedom. By substituting F in (*) and on simplification, we get 100 (1-α) % confidence 

interval of the ratio of two population variances, that is 

𝑃 (
𝑠1

2

𝑠2
2𝐹𝛼

2
,(𝑛1−1 ,   𝑛2−1)

<
𝜎1

2

𝜎2
2 <

𝑠1
2

𝑠2
2𝐹1−

𝛼

2
,(𝑛1−1 ,   𝑛2−1)

) = 1 − 𝛼 

And 
𝑠1

2

𝑠2
2𝐹𝛼

2
,(𝑛1−1 ,   𝑛2−1)

,
𝑠1

2

𝑠2
2𝐹

1−
𝛼
2

,(𝑛1−1 ,   𝑛2−1)

    are 100(1-α) % confidence limits for ratio of two 

population variances. 

 

Remark: we have the following reciprocal relation between the upper and lower ‘α’ significance 

points of F-distribution: 

𝐹𝛼

2
,(𝑛1−1 ,   𝑛2−1)  ×  𝐹1−

𝛼

2
,(𝑛2−1 ,   𝑛1−1) = 1 ⇒ 𝐹𝛼

2
,(𝑛1−1 ,   𝑛2−1) =

1

𝐹1−
𝛼

2
,(𝑛2−1 ,   𝑛1−1)

 

 

Example: construct 90% confidence interval in the variability of amount of fill in 475gm and 

850gm cornflakes boxes. 

Sample  Size Sample 

variance 

850gm boxes 4 40.917 

475gm boxes 15 16.714 

Solution: n1=4, n2=15, 𝑠1
2 = 40.917, 𝑠2

2 = 16.714, α=0.1 

We know that 100 (1-α) % confidence interval for the ratio of two population variances is given 

by 
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𝑃 (
𝑠1

2

𝑠2
2𝐹𝛼

2
,(𝑛1−1 ,   𝑛2−1)

<
𝜎1

2

𝜎2
2 <

𝑠1
2

𝑠2
2𝐹1−

𝛼

2
,(𝑛1−1 ,   𝑛2−1)

) = 1 − 𝛼 

From F-table, 𝐹𝛼

2
,(𝑛1−1 ,   𝑛2−1) = 𝐹0.05,(3,14) = 3.3439 𝑎𝑛𝑑𝐹1−

𝛼

2
,(𝑛1−1 ,   𝑛2−1) =

1

𝐹𝛼
2

,(𝑛2−1 ,   𝑛1−1)

=

1

𝐹0.05,(14,3)
=

1

3.3439
= 0.229 

Lower limit = 
𝑠1

2

𝑠2
2𝐹𝛼

2
,(𝑛1−1 ,   𝑛2−1)

=
40.917

16.714×3.3439
= 0.732 

Upper limit = 
𝑠1

2

𝑠2
2𝐹

1−
𝛼
2

,(𝑛1−1 ,   𝑛2−1)

=
40.917

16.714×0.229
= 10.690 

Therefore, 90% confidence interval for the ratio of two population variances is (0.732, 10.690). 

 

Estimating sample size: 

For statistical inference based on sample statistic, estimating suitable sample size is essential. The 

standard error of sampling distribution of sample statistic is inversely proportional to the sample 

size n. Also, width of the confidence interval can de decreased by increasing the sample size.    

 

Precision of confidence interval: 

The true population parameter value is determined by the width of the confidence interval. If the 

width of the confidence interval is narrow, then estimate will be more precise and vice-versa. The 

width of confidence interval is influenced by 

 Specified level of confidence 

 Sample size 

 Population standard deviation 

To gain more precision or confidence, or both, the sample size needs to be increased 

provided variability in the population is less. However, if the sample size cannot be 

increased, then it may increase the cost of sampling. Hence with the same sample size, the 

desired level of precision can be gained only by decreasing the confidence level so that 

estimate may become close to the true population parameter. The difference between 

precision and confidence levels are illustrated below in the figure.  
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Exercise  

1. A random sample of height of 60 students from large population of students in a 

university having S.D. of 0.70ft has an average height of 5.5ft. Find 95% confidence 

interval for the average height of all students of the university. 

2. The mean number of production of which for 80 villagers and 100 villagers taken as a 

sample from a locality are 400pounds and 380pounds respectively. The S.D’s of 

production of these samples are 20 and 30pounds respectively. Obtain 99% C.I for 

difference of production.   

3. A sample of 25 students is found to have average weight of 50 kg with a S.D. of 6 kg. 

Set up 99% C.I for the average weight of the population. 

4. Two samples gave the following results. 

Sample size 12 8 

Sample mean 15 14 

Standard deviation 6 4 

            Find the confidence interval for the difference of 2 means at 95% confidence                                                                   

coefficient. 

5. The SD of heights of 18 male students chosen at random in a school is 3.4. Find 95% 

and 99% confidence limits of the SD of all males students at the school. 

6. Obtain 90% confidence limits for the ratio of two variance from the following: 

Data Size of 

sample 

mean S.D. 

Sample A 80 60 4 

Sample B 100 62 6 
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UNIT 13 

 INTRODUTION TO TESTING OF HYPOTHESIS 

13.1 Objective 

After studying this chapter, we will able to explain why hypothesis testing is important with the 

help of some basic definitions involved in testing of hypothesis. 

 

13.2 Introduction 

Testing of hypothesis is the one of the important branches of statistical inference. It helps in 

decision making about population parameter and tests the validity of the claim (assertion, belief, 

assumption or statement), also called hypothesis. It refers to the process of evaluating whether a 

statistical result or observation is meaningful or due to chance. 
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The goal of significance testing is to make inferences about a population based on sample data. It 

involves comparing the observed data to a null hypothesis, which represents a default assumption 

or no effect scenario. By assessing the likelihood of observing the data under the null hypothesis, 

we can determine if there is sufficient evidence to reject or fail to reject the null hypothesis in 

favour of an alternative hypothesis. 

A very important aspect of the sampling theory is the study of the tests of significance, which 

enable us to decide on the basis of the sample results, if 

 The deviation between the observed sample statistic and the hypothetical parameter value. 

Or 

 The deviation between the two independent sample statistics; is significant or might be 

attributed to chance or the fluctuations of sampling. 

Significance testing helps researchers to draw conclusions from data and make informed or valid 

decisions. However, it's essential to consider the limitations and assumptions of the chosen test 

and interpret the results in the context of the specific study or problem. 

 

13.3 Basic concepts of Testing of Hypothesis: 

 Statistical hypothesis: A statistical statement regarding population parameter which we 

want to verify on the basis of information available from a sample. It is denoted by H. 

            For example, H: the average marks scored by large group of students is 80[ i.e., µ=80] 

 Statistical hypothesis may be simple or composite hypothesis. 

 Simple hypothesis: If the statistical hypothesis specifies population parameter 

completely, then it is called simple hypothesis. 

For example, if X~N (µ, σ2), then H: µ= µ0, σ
2= σ2

0. 

 Composite hypothesis: If the statistical hypothesis does not specify population parameter 

completely, then it is called composite hypothesis. 

For example, if X~N (µ, σ2), then H: µ= µ0, unknown σ2. 

 There are two types of statistical hypothesis:  

1. Null hypothesis and  

2. Alternative hypothesis. 

 Null hypothesis (H0): it is the hypothesis which is being tested for possible rejection 

under the assumption that it is true. It is a definite statement about the population 

parameter. 

For example, to test the effectiveness of training, the null hypothesis is  

H0: the training is not effective. 

 Alternative hypothesis (H1): It is complementary to null hypothesis. It is the hypothesis 

which is accepted when the null hypothesis is rejected. 

For example, H0: µ= µ0 against H1: µ≠ µ0 (for two tailed test) 

              or H1: µ< µ0 (for left tailed test)      

  or H1: µ> µ0 (for right tailed test) 

 Errors in sampling: 
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The main objective in sampling theory is to draw a valid conclusion about population 

parameter on the basis of sample results. In practice, we decide to accept or reject a lot 

after examining a sample from it. As we are likely to commit the following two types of 

errors: 

 

 Decision from sample 

Reject H0 Accept H0 

True state H0 true Wrong (type I error) Correct 

H0false Correct Wrong (type II error) 

1. Type I error: the error that occur by rejecting the null hypothesis when it is 

actually true. It is also called as First kind error. 

2. Type II error: the error that occurs by accepting the null hypothesis when it is 

actually not true. It is also called as Second kind error. 

Note: once we commit type II error, then there is no chance of making correct 

decision. Therefore, type II error is more significant error than type I error. So, one 

fixes type I error probability as it minimizes probability of type II error. 

 Size of the test: The probability of rejecting the null hypothesis when it is actually true. It 

is denoted by ‘α’. 

α = P(type I error) = P(reject H0|H0 is true) 

Here α is also called size of Type I error. 

 Similarly, size of Type II error is defined as the probability of accepting the null 

hypothesis when it is actually not true.It is denoted by ‘β’. 

β = P(type II error) = P(acceptH0|H0 is not true) 

 

 Power of the test: The probability of rejecting the null hypothesis when it is actually not 

true. It is denoted by ‘1-β’. 

1 − β = P(reject H0|H0 is not true) = 1 − P(type II error) 

 

 Example: let X follows Exponential distribution with parameter θ. Obtain sizes of type I 

and type II error and power of the test if an observation takes at random exceeds 5 then it 

leads to reject H0 such that H0: θ=3 against H1: θ=4. 

Solution: X~ exp (θ), where θ is the parameter. 

Then the p.d.f of exponential distribution is f(x) = {θe−θx , θ > 0, 0 < 𝑥 < ∞
0 ,          otherwise

 

 

Here the rejection region =W={x: x > 5} 

And the acceptance region is 𝑊̅={x: x={x: x ≤ 5} 

Size of type I error = α = P(Type I error) = P( reject H0| H0: θ=3) 

                                                            = P(x>5| H0: θ=3) 

= ∫ 3e−3xdx
∞

10
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= 3 (
 e−3x

−3
)

x=5

x=∞

 

= −(e−3∞ −  e−3(5)) 

                                                                      = 0.000000305 

Size of type II error = β = P(Type II error) = P( accept H0| H1: θ=4) 

                                                                  = P(x≤5| H1: θ=4) 

= ∫ 4e−4xdx
5

0

 

= 4 (
 e−4x

−4
)

x=0

x=5

 

= −(e−3(5) −  e−3(0)) 

                                                           = 0.9999 

Power of the test = 1- β = 1-0.9999 = 0.00001 

 

 Critical region: A region in the sample space which leads to reject the null hypothesis is 

termed as critical region or rejection region. 

 Acceptance region: A region in the sample space which leads to accept the null 

hypothesis is termed as acceptance region. 

 Critical value: A value which separates critical region and acceptance region is called 

critical value or significance value or table value. It depends upon α level of significance 

and alternative hypothesis. 

 Level of significance: it is the maximum probability of rejecting the null hypothesis when 

it is actually true. It is denoted by α. 

 Two tailed test: it is a test of statistical hypothesis where rejection region is located at 

both the tails of the normal curve. This is used when H1 is of the type not equal (≠). 

 

 One tailed test: it is a test of statistical hypothesis where rejection region is located at 

only one tail of the normal curve. It may be left tailed test or right tailed test. This is used 

when H1 is of the type less than (<) or more than (>). 
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 Test statistic: The testing of hypothesis is conducted for the distribution of statistic is 

called test statistic. 

 Test statistic =
sample statistic−hypothetical value

standard error of statistic
 

 

Exercise problems:  

1. Define simple and composite hypothesis with an example. 

2. Differentiate Null and alternative hypothesis. 

3. Explain error in sampling. 

4. Explain one tailed and two tailed test. 

5. If X≥2, is the critical region for testing H0: θ=1 against H1: θ=2, on the basis of the single 

observation from the populationf(x) = {θe−θx , θ > 0, 0 < 𝑥 < ∞
0 ,          otherwise

. Obtain the values of 

sizes of type I and type II errors and power of the test. 

6. Let p be the probability that a coin will fall head in a single toss in order to test H0: p=1/3 

against H1: p = 3/4. The coin is tossed 5 times and H0 is rejected if more than 4 heads are 

obtained. Find the value of α, β and 1-β. 

7. Given the frequency function  f(x) = {
1

θ
 ,   0 ≤ 𝑥 ≤ 𝜃

0 ,          otherwise
 and to test H0: θ=1 against H1: 

θ=2.5 by means of a single observed value of x with the interval 0.5≤x as the critical 

region. Find the value of α, β and 1-β. 
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UNIT 14 

 LARGE SAMPLE TESTS 
14.1 Objectives 

After completion of this Unit, you should  

 Know the meaning of large sample test, assumptions and the applications. 

 Know how to test the population mean, equality of means of two populations. 

 

14.2 INTRODUCTION 

Large sample test is a statistical test procedure used to test a hypothesis about a population 

parameter when the sample size is large (n≥30).Since large samples approaches normal 

distribution; therefore, the tests are based on normal distribution. This leads to the use of standard 

normal distribution tables or z-scores to test hypotheses about the population mean or proportion. 
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In other words, large sample tests provide a practical and efficient way to make statistical 

inferences when dealing with sufficiently large sample sizes. They have wide range of 

applications in testing of hypothesis, estimation of confidence interval, and comparative analyses 

in various fields, including social sciences, economics, healthcare, and quality control. 

 

14.3 General test procedure for Large Sample Test  

Step 1:  Constructing the null hypothesis (H0). 

Step 2: Constructing the alternative hypothesis (H1). It helps to decide whether to use two tailed 

or one (left or right) tailed test. 

Step 3: computation of test statistic; underH0 

 𝑍 =  
Relevant statistic−Hypothetical value

Standard Error
 ~ N(0, 1) 

Step 4: Depending on the alternative hypothesis (H1) and level of significance (α), the critical       

 (Table) value i.e.,± 𝑍𝛼/2 (for two tailed) or 𝑍𝛼(for one tailed) is chosen.                                

Step 5: If the calculated value of the test statistic(Z) lies in the acceptance region, then we  

 Do not rejectH0. Otherwise we reject H0. 

 i.e., for two tailed test, if -𝑍𝛼/2 ≤ Z ≤ +𝑍𝛼/2, then we do not reject H0. 

 i.e., for left tailed test, if Z ≥ -𝑍𝛼  then we do not reject H0. 

 i.e., for Right tailed test, if Z ≤  𝑍𝛼  then we do not reject H0. 

 Otherwise H0 is rejected. 

 

Applications of Large Sample Test: 

Applications of Large sample test are: 

1. It is used to test for population mean. 

2. It is used to test for equality of means of two populations. 

3. It is used to test for population proportion. 

4. It is used to test for equality of proportions of two populations. 

5. It is used in the construction of confidence intervals. 

6. It is used to estimate a population parameter and to determine a range of values within 

which the true parameter is likely to fall with a specified level of confidence. 

7. It is used in Quality Control to assess whether a production process is operating within 

specified limits. 

8. It is used in Regression analysis to test the significance of regression coefficients or to 

compare the performance of different regression models. 

 

14.4 Large sample test procedure to test for population mean 

Here we test the characteristic of the population mean µ, from the large sample(n ≥30) which is 

drawn from that population. And the test procedure is as follows. 

Step 1:H0:  The population mean. i.e., µ = µ0. 

Step 2:H1:The population mean. i.e., µ ≠ µ0. (Two tailed test) 

   OR 

        The population mean. i.e.,µ< µ0. (Left tailed test) 
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   OR 

       The population mean. i.e.,µ> µ0. (Right tailed test) 

Step 3: computation of test statistic; underH0 

   Z = 
𝑋̅− μ
𝜎

√𝑛⁄
 ~ N(0,1) 

where 𝑋̅is the sample mean, ,σ is the population standard deviation, when σ is unknown, then 

replace it by sample standard deviation’s’ and n is the sample size. 

Step 4: Depending on the alternative hypothesis (H1) and level of significance (α), the critical       

 (Table)value i.e., ± 𝑍𝛼/2 (for two tailed) or 𝑍𝛼(for one tailed) is chosen.                                

Step 5: If the calculated value of the test statistic(Z) lies in the acceptance region, then we  

 Do not rejectH0. Otherwise we reject H0. 

 i.e., for two tailed test, if -𝑍𝛼/2 ≤ Z ≤ +𝑍𝛼/2, then we do not reject H0. 

 i.e., for left tailed test, if Z ≥ -𝑍𝛼  then we do not reject H0. 

 i.e., for Right tailed test, if Z ≤  𝑍𝛼  then we do not reject H0. 

 Otherwise H0 is rejected. 

Remark: If the level of significance is not specified in the problem then by default we use   

 5% level of significance. 

Example 1:A sample of 144 students is chosen from a university. The average height of these 

students is 160 cm and the standard deviation is 8 cm. At 1% level of significance can we assume 

that the average height of these university students is 158 cm? 

Solution: Given: n = 144, 𝑋̅ = 160, s = 8, µ = 158 and α = 1%. 

H0: The average height of the university students is 158 cm. i.e., µ = 158 cm 

H1:The average height of the university students is not equal to 158 cm. i.e., µ ≠ 158  

cm. (Two tailed test) 

Test statistic:  𝑍 =
𝑋̅− μ
𝑠

√𝑛⁄
 ~ N(0,1) 

   =  
160− 158

8
√144

⁄
 

          Z = 2.9999 
 

Depending on the alternative hypothesis (H1) and at 1% level of significance, the critical values 

are [-2.58, +2.58]. 

Since, Z value lies in the rejection region, therefore we reject H0. 

Conclusion: The average height of the university students is not equal to 158 cm.          

           i.e., µ ≠ 158 cm.               

Example 2: A random sample of 400 tins of ghee has mean weight 5.96 kg and the standard 

deviation of 0.5kg. Test at 5% level of significance that the average weight of tins of ghee is less 

than 6 kg? 

Solution: Given: n = 400, 𝑋̅ = 5.96, s = 0.5, µ = 6 and α = 5%. 

H0: The average weight of tins of ghee is 6 kg i.e., µ = 6 kg 

H1: The average weight of tins of ghee is less than 6 kg i.e., µ < 6 kg (Left tailed test) 
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Test statistic:  Z = 
𝑋− μ
𝑠

√𝑛⁄
 ~ N(0,1)   

  = 
5.96− 6

0.5
√400

⁄
 

         Z = -1.6 

 
Depending on the alternative hypothesis (H1) and at 5% level of significance, the critical value is 

-1.65. 

Since, Z value lies in the acceptance region; therefore, we do not reject H0. 

Conclusion: The average weight of tins of ghee is 6 kg i.e., µ = 6 kg. 

 

14.5 Large sample test procedure to test for equality of means of two populations 

Here we test the equality of means of two populations, from two large samples, which are drawn 

either from that population or from two different populations. And the test procedure is as 

follows. 

Step 1:  H0:  The population means are equal µ1 = µ2. 

Step 2:  H1: The population means are not equal µ1 ≠ µ2. (Two tailed test), OR 

The mean of first population is less than the mean of the second population        µ1< µ2. (Left 

tailed test) 

   OR 

The mean of first population is more than the mean of the second population            µ1> µ2. 

(Right tailed test) 

 

Step 3: computation of test statistic; underH0 

  Z = 
𝑋̅1−𝑋̅2

√
𝜎1

2

𝑛1
+ 

𝜎2
2

𝑛2

 ~ N(0,1) 

 Where,𝑋̅1and𝑋̅2are sample means; 𝜎1 and 𝜎2 are population standard deviations, when they 

are unknown, then they are replaced by sample standard deviation’s1’ and ’s2’ ; n1and n2 are the 

sample sizes. 

Step 4: Depending on the alternative hypothesis (H1) and level of significance (α), the critical       

 (Table)value i.e., ± 𝑍𝛼/2 (for two tailed) or 𝑍𝛼(for one tailed) is chosen.                                

Step 5: If the calculated value of the test statistic(Z) lies in the acceptance region, then we  

 Do not rejectH0. Otherwise we reject H0. 

 i.e., for two tailed test, if -𝑍𝛼/2 ≤ Z ≤ +𝑍𝛼/2, then we do not reject H0. 

 i.e., for left tailed test, if Z ≥ -𝑍𝛼  then we do not reject H0. 

 i.e., for Right tailed test, if Z ≤  𝑍𝛼  then we do not reject H0. 

 Otherwise H0 is rejected. 
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Example 3: The mean I.Q of 150 randomly selected boys of a college is 95 and that of 125 

randomly selected girls of that college is 93. Standard deviations of their I.Q are 12 and 10 

respectively. Test whether there is a significant difference between the average I.Q of boys and 

girls at 1% level of significance. 

Solution: Given: n1 = 150, 𝑋̅1= 95, s1 = 12,n2 = 125, 𝑋̅2= 93, s2 = 10 and α = 1%. 

              H0:  There is no significant difference between the average I.Q of boys and girls   

                      i.e., µ1 = µ2. 

H1:There is a significant difference between the average I.Q of boys and girls   

                      i.e., µ1≠ µ2.(Two tailed test) 

Test statistic; underH0 

  Z = 
𝑋̅1−𝑋̅2

√
𝑠1

2

𝑛1
+ 

𝑠2
2

𝑛2

 ~ N(0,1)                 

Z = 
95−93 

√122

150
+ 

102

125

 

  Z = 1.5075 

 

At 1% level of significance, the critical values are [-2.58, +2.58]. 

Since, Z value lies in the acceptance region; therefore, we do not reject H0. 

Conclusion: There is no significant difference between the average I.Q. of boys and girls   

                      i.e., µ1 = µ2. 

Example 4:The mean and variance of heights of a sample of 100 randomly selected Biharis are 

175 cm and 9 cm2 respectively. The mean and variance of heights of a sample of 80 randomly 

selected Rajasthanis are 173 cm and 16 cm2 respectively. Test whether that the mean height of 

Biharis is taller than Rajasthanis at 5% level of significance? 

Given: n1 = 100, 𝑋̅1= 175,𝑠1
2 = 9,n2 = 80, 𝑋̅2= 173,𝑠2

2= 16and α = 5%. 

H0:  The mean height of Biharis is equal to the mean height of Rajasthanis 

        i.e., µ1 = µ2. 

H1: The mean height of Biharis is taller than the mean height of Rajasthanis 

                      i.e., µ1> µ2.(Right tailed test) 

Test statistic; underH0 

  Z = 
𝑋̅1−𝑋̅2

√
𝑠1

2

𝑛1
+ 

𝑠2
2

𝑛2

 ~ N(0,1)  

Z = 
175−173 

√
9

100
+ 

16

80

 

  Z = 3.7140. 
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Depending on the alternative hypothesis (H1) and at 5% level of significance, the critical value is 

1.65. 

Since, Z value lies in the rejection region, therefore we reject H0. 

Conclusion: The mean height of Biharis is taller than the mean height of Rajasthanis 

                      i.e., µ1 > µ2.(Right tailed test). 

 

14.6  Large sample test (Z - test) procedure to test for population proportion: 

Step 1:  H0:  The population proportion. i.e., P = P0. 

Step 2:H1: The population proportion. i.e., P ≠ P0. (Two tailed test) 

   OR 

  The population proportion. i.e., P < P0. (Left tailed test) 

   OR 

  The population proportion. i.e., P > P0. (Right tailed test) 

Step 3: computation of test statistic; underH0 

 Z = 
𝑝−𝑃0

√
𝑃0𝑄0

𝑛

 ~ N(0,1) 

 Where, 𝑝is sample proportion, i.e., 𝑝 =
𝑥

𝑛
 

Here,𝑥 is the number of items possessing an attribute and 𝑛 is the number of   

items in the sample. 

𝑃0is the population proportion value which is to be tested. 

𝑄0= 1-𝑃0 

Depending onthe alternative hypothesis (H1) and level of significance (α), the critical 

(Table) value i.e., ± 𝑍𝛼/2 (for two tailed) or 𝑍𝛼(for one tailed) is chosen.                                

Step 5: If the calculated value of the test statistic(Z) lies in the acceptance region, then we  

 Do not rejectH0. Otherwise we reject H0. 

 i.e., for two tailed test, if -𝑍𝛼/2 ≤ Z ≤ +𝑍𝛼/2, then we do not reject H0. 

 i.e., for left tailed test, if Z ≥ -𝑍𝛼  then we do not reject H0. 

 i.e., for Right tailed test, if Z ≤  𝑍𝛼  then we do not reject H0. 

 Otherwise H0 is rejected. 

 

Example 7: The mobile manufacturer states that less than 3% of the mobiles he provided to a 

certain mobile store are defects. A sample of 500 mobiles revealed that 10 were defects. Test his 

statement at 1% level of significance. 

Solution: Given: n = 500, p =
𝑥

𝑛
=

10

500
 = 0.02, P0 = 0.03, Q0 =1- P0= 0.97and α = 1%. 

H0:  3% of the mobiles are defects i.e., P =3%. 

H1: less than 3% mobiles are defects. i.e., P< 3%. (Left tailed test) 

 Computation of test statistic;  
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UnderH0, test statistic is 

 Z = 
𝑝−𝑃0

√
𝑃0𝑄0

𝑛

 ~ N(0,1) 

 =
0.02−0.03

√
(0.03)(0.97)

500

 

         Z = -1.3158 

 

 

Depending on the alternative hypothesis (H1) and at 1% level of significance, the critical value is 

-2.33.Since, Z value lies in the Acceptance region; therefore, we do not reject H0. 

Conclusion: 3% of the mobiles are defects i.e., P =3%. 

 

14.7 Large sample test (Z - test) for equality of proportions of two populations: 

Step 1:  H0: The population proportions are equal. i.e., P1 = P2. 

Step 2:H1:The population proportions are not equal. i.e., P1 ≠ P2. (Two tailed test) 

   OR 

The first population proportion is less than the second population proportion. i.e., P1< P2. (Left 

tailed test) 

   OR 

The first population proportion is more than the second population proportion.              

i.e., P1> P2. (Right tailed test) 

Step 3: computation of test statistic; underH0 

Z = 
𝑝1− 𝑝2

√𝑃𝑄(
1

𝑛1
+

1

𝑛1
)
 ~ N(0,1) 

Where, 𝑝1𝑎𝑛𝑑 𝑝2 are the sample proportions from first and second samples respectively,  

              i.e., 𝑝1=

𝑥1

𝑛1
, 𝑝2=

𝑥2

𝑛2
and 𝑃 =  

𝑥1+𝑥2

𝑛1+ 𝑛2
 = 

𝑛1𝑝1+ 𝑛2𝑝2

𝑛1+ 𝑛2
; 𝑄 = 1 − 𝑃 

Here, 𝑥1 𝑎𝑛𝑑 𝑥2 are the number of items possessing an attribute from first and second samples; 

𝑛1𝑎𝑛𝑑 𝑛2 are the number of items in the sample one and two respectively. 

Step 4: Depending on the alternative hypothesis (H1) and level of significance (α), the critical       

 (Table)value i.e., ± 𝑍𝛼/2 (for two tailed) or 𝑍𝛼(for one tailed) is chosen.                                

Step 5: If the calculated value of the test statistic(Z) lies in the acceptance region, then we  

 Do not rejectH0. Otherwise we reject H0. 

 i.e., for two tailed test, if -𝑍𝛼/2 ≤ Z ≤ +𝑍𝛼/2, then we do not reject H0. 

 i.e., for left tailed test, if Z ≥ -𝑍𝛼  then we do not reject H0. 

 i.e., for Right tailed test, if Z ≤  𝑍𝛼  then we do not reject H0. 

 Otherwise H0 is rejected. 
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Example 8: In a city, out of 500 students who took M.C.A examination, 460 are passed and out 

of 400 students who took M.B.A examination, 350 are passed. At 1% level of significance, can 

we conclude that M.C.A students have performed better than M.B.A students? 

Solution: Given: n1 = 500, p1 = 
𝑥1

𝑛1
=

460

500
 = 0.92, p2 = 

𝑥2

𝑛2
=

350

400
 = 0.875,    

 𝑃 =  
𝑥1+𝑥2

𝑛1+ 𝑛2
 =

460+350

500+ 400
  = 0.9 Q = 1- P = 1- 0.9 = 0.1 and α = 1%. 

H0:  Performance of M.C.A students and M.B.A students is same. i.e., P1 = P2. 

H1: Performance of M.C.A students is better than M.B.A students P1> P2. (Right tailed test) 

 

Computation of test statistic; underH0, 

Z = 
𝑝1− 𝑝2

√𝑃𝑄(
1

𝑛1
+

1

𝑛1
)
 ~ N(0,1) 

  = 
0.92− 0.875

√(0.9)(0.1) (
1

500
+

1

400
)
 

=>Z = 2.2388 

 

Depending on the alternative hypothesis (H1) and at 1% level of significance, the                     

critical value is 2.33.        

Since, Z value lies in the Acceptance region; therefore, we do not reject H0. 

Conclusion: Performance of M.C.A. students and M.B.A students is same.i.e., P1 = P2. 

 

 

Exercise: 

1. A sample of 400 students is taken from a University. If the mean and standard 

deviation of their weights are 55 kg and 3 kg respectively, test at 5% level of 

significance that the average weight of the university students is 50 kg? 

2. A random sample of 65 kids is taken from a kindergarten. The average height of the 

kids is 103 cm and standard deviation is 5 cm. Can we assume that the average height 

of the kindergarten kids is less than 105cm? 

3. A company manufactures car tyres. Their average life is 40,000 kilometres and 

standard deviation 5,000 kilometres. A change in the production process is believed to 

result in a better product. A test of sample of 100 new tyres has mean life of 41,000 

kilometres. Can you conclude at 5% level of significance that the new product gives 

better result? 

4. For the following data, test whether means differ significantly. 

Sample Size Mean Standard deviation 

A 100 55 8 

B 50 53 6 
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5. A random sample of 150 workers from South Karnataka shows that their mean wage 

is Rs. 215 per day with standard deviation Rs.20. A random sample of 200 workers 

from North Karnataka shows that their mean wage is Rs. 230 per day with standard 

deviation Rs.30. Test at 5% level of significance that, mean wages of South Karnataka 

is less than mean wages of North Karnataka. 

6. In a random sample of 1000 persons from a city, 450 are female. Can we conclude 

that male and female are in the equal ratio in the city? 

7. The manufacturer of a surgical instruments claims that less than 3% of the instruments 

he supplied to a certain hospital are faulty. A sample of 300 instruments revealed that 

10 were faulty. Test his claim at 1% level of significance. 

8. For the following data, test whether the difference between the proportions of the 

populations from which the two samples drawn is significant at 1% level of 

significance. 

Sample Size Proportion 

I 200 0.03 

II 300 0.01 

9. 500 students are randomly selected from town A, 75% of the students passed. 300 

students are randomly selected from town B, 68% of the students passed. Can we 

conclude that the performance of town A students are better than the performance of 

town B students at 5 % level of significance? 

 

 

 

 

 

 

 

 

UNIT 15 

SMALL SAMPLE TESTS – I 
(Tests for Mean(s), paired t-test, Correlation coefficient ) 

 
15.1 Objectives 

After completion of this Unit, you should  

 Know the meaning of small sample test, assumptions and the applications. 

 Know how to test the significance of mean of a population, the difference between the 

means of two populations using two small samples (Independent samples). 

 Know how to test the significance of difference between the means of two populations 

using two small samples (dependent samples)-paired t-test. 
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 Know how to test the significance of correlation coefficient. 

 

15.2 Introduction 

Small sample test is a statistical test procedure used to analyse data when the sample size is 

relatively small i.e., n < 30. It helps to determine if there is a significant difference between two 

or more groups or if there is a significant correlation between two variables. 

While we deal with small sample sizes, it is necessary to consider the assumptions of the 

statistical test being used. For instance, t- test assumes that the data is normally distributed; 

violating this assumption can lead to inaccurate results. 

In other words, small sample tests are useful tools for analysing data when the sample size is 

small. However, it is necessary to choose the appropriate statistical test and consider the 

assumptions of the test to ensure accurate results. 

 

15.3 Applications of Small Sample Test 

Applications of small sample test are: 

1. It is used to test the significance of the mean of a population using small sample. 

2. It is used to test the difference between the means of two populations using two 

small samples (Independent samples). 

3. It is used to test the difference between the means of two populations using paired 

observations (dependent samples). 

4. It is used as fundamental component of ANOVA (Analysis Of Variance), which is 

used to compare means across multiple groups. 

5. It is used in Regression analysis to test the significance of regression coefficients.  

6. It is used to construct confidence intervals for small samples. 

Remark: t- test is performed when the variance of the population is unknown. 

 

Degrees of freedom: it is the number of independent observations and is denoted by d.f. If there 

are ‘n’ observations then, degrees of freedom = (n-c), here ‘c’ is the number of independent 

constraints. 

 

15.4  Small sample test procedure to test the significance of mean of a population: 

Step 1:H0:  The population mean. i.e., µ = µ0. 

Step 2:H1:The population mean. i.e.,µ ≠ µ0. (Two tailed test) 

   OR 

The population mean. i.e.,µ< µ0. (Left tailed test) 

   OR 

The population mean. i.e.,µ> µ0. (Right tailed test) 

 

Step 3: computation of test statistic; underH0 

 t = 
𝑋̅− μ

𝑠
√𝑛−1⁄

 ~ t with (n-1) d.f. 
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 Where, 𝑋 ̅is the sample mean. 

   is the hypothetical mean of the population. 

  n is the sample size. 

  s is the standard deviation of the sample =  =  

Step 4: Depending on the alternative hypothesis (H1), degrees of freedom and level of 

significance (α), the critical       

 (Table)value i.e., ±  (for two tailed) or (for one tailed) is chosen.                                

Step 5: If the calculated value of the test statistic(t) lies in the acceptance region, then we  

 Do not rejectH0. Otherwise we reject H0. 

 i.e., for two tailed test, if -  ≤ t ≤ + , then we do not reject H0. 

 i.e., for left tailed test, if t ≥ -   then we do not reject H0. 

 i.e., for Right tailed test, if t ≤    then we do not reject H0. 

 Otherwise H0 is rejected. 

 

Example 1:The length of 10 samples of woollen taken from a population has mean length of 58 

cm and standard deviation 5 cm. Test whether the mean length of the population can be taken as 

60cm at 5% level of significance? 

Solution: Given: n = 10,  = 58, s = 5, µ = 60 and α = 5%. 

H0: The mean length of population is 60 cm i.e., µ = 60 cm. 

H1: The mean length of population is not equal to 60 cm. i.e.,µ ≠60. (Two tailed test) 

Under H0, 

t =  ~ t with (n - 1) d.f. 

  =  

 t = -1.1999 

 

 

Depending on the alternative hypothesis (H1) degrees of freedom (n-1 = 10-1 = 9)and level of 

significance (α = 5%), the critical values are [-2.26, +2.26]. 

Since, t value lies in the acceptance region; therefore, we do not reject H0. 

Conclusion: The mean length of population is 60 cm i.e., µ = 60 cm.  

 

Example 2:The mean weekly sales of the Gudbud in an ice-cream parlour were 156.3. After 

advertising campaign, the mean weekly sales in 22 parlours for a typical week increased to 163.7 

and showed standard deviation of 15.2. Was the advertisement campaign successful?  

Solution: Given: n = 22,  = 163.7, s = 15.2, µ = 156.3 and α = 5%. 

H0: Advertisement campaign is not successful i.e., µ = 156.3. 
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H1: Advertisement campaign is successful i.e., µ > 156.3. (Right tailed test) 

Under H0, 

t =  ~ t with (n-1) d.f. 

   =  

  t = 2.2319 

 

Depending on the alternative hypothesis (H1) degrees of freedom (n-1 = 22-1 = 21) and level of 

significance (α = 5%), the critical value is 1.72. 

Since, t value lies in the rejection region; therefore, we reject H0. 

Conclusion: Advertisement campaign is successful i.e., µ > 156.3. 

 

15.5 Small sample test procedure to test the difference between the means of two 

populations using two small samples (Independent samples) 

Step 1:H0: The population means are equal i.e., µ1= µ2. 

Step 2:H1:The population means are not equal i.e.,µ1 ≠ µ2. (Two tailed test) 

   OR 

The mean of first population is less than the mean of the second population.          i.e.,µ1<µ2. (Left 

tailed test) 

   OR 

The mean of first population is more than the mean of the second population.        i.e.,µ1>µ2. 

(Right tailed test) 

Step 3: computation of test statistic; underH0 

 t =  ~ t with ( + -2) d.f. 

Where, and  are the sample means.µ1 and µ2 are the hypothetical means of the population, 

and n1 and n2arethe sample sizes. 

  =  =  

Step 4: Depending on the alternative hypothesis (H1), degrees of freedom and level of 

significance (α), the critical (Table)  value i.e., ±  (for two tailed) or (for one tailed) is 

chosen.                                

Step 5: If the calculated value of the test statistic (t) lies in the acceptance region, then we do not 

rejectH0. Otherwise we reject H0. 

 i.e., for two tailed test, if -  ≤ t ≤ + , then we do not reject H0. 

 i.e., for left tailed test, if t ≥ -   then we do not reject H0. 

 i.e., for Right tailed test, if t ≤    then we do not reject H0. 
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 Otherwise H0 is rejected. 

 

Example 3:Two different types of drugs P and Q were tried on certain patients for increasing 

weight. 5 persons were given drug P and 7 persons were given drug Q. The increase in weight in 

pounds is given below. 

Drug P 8 12 13 9 3   

Drug Q 10 8 12 15 6 8 11 

Do the two drugs differ significantly with regard to their effect in increasing weight? Test at 5 % 

level of significance. 

Solution:  

 Let ‘x1’ be the weight of persons using drug P and ‘x2’ be theweight of persons using drug 

Q. 

H0: Two drugs P and Q do not differ significantly in increasing weight. i.e., µ1= µ2. 

H1:Two drugs P and Q differ significantly in increasing weight.i.e., µ1 ≠ µ2.(Two tailed test) 

Variance calculation for two samples is given in the following table: 

      
8 -1 1 10 0 0 

12 3 9 8 -2 4 

13 4 16 12 2 4 

9 0 0 15 5 25 

3 -6 36 6 -4 16 

   8 -2 4 

   11 1 1 

∑ =45 

 

 = 62 

 

 

∑ =70 

 

 = 54 

 

 

 

 

 

 
UnderH0, the test statistic is 

 

 t =  ~ t with ( + - 2) 

d.f. 

  =   



 

 

 

 

179 

 t = -0.501 

Depending on the alternative hypothesis (H1) degrees of freedom ( + -2= 10) and level of 

significance (α = 5%), the critical value are [-2.23, +2.23]. 

Since, t value lies in the acceptance region; therefore, we do not reject H0. 

Conclusion: Two drugs P and Q do not differ significantly in increasing weight. i.e., µ1= µ2. 

 

Example 4:Mean and standard deviation of heights of residents of two cities gave the following 

results. 

 City X City Y 

Sample 10 12 

Mean (cm) 170.5 173.5 

Standard deviation (cm) 4 5 

Can you conclude at 5% level of significance that the population of city X on an average is 

shorter than city Y? 

Solution: n1 = 10, n2 = 12, = 170.5, s1 = 4, = 173.5,s2= 5 and α = 5%. 

H0: The mean height of population of city X and city Y are same i.e., µ1= µ2. 

H1: The mean height of population of city X is less than city Y are same i.e., µ1< µ2.(Left 

tailed test) 

To compute combined sample variance, we have, 

  =  =  = 23 

UnderH0, the test statistic is 

 

t =  ~ t with ( + - 2) d.f.  

 

  t = -1.461 

 

 

Depending on the alternative hypothesis (H1) degrees of freedom ( + -2= 20) and level of 

significance (α = 5%), the critical value is -1.725. 

Since, t value lies in the acceptance region; therefore, we do not reject H0. 

Conclusion: The mean height of population of city X and city Y are same i.e., µ1= µ2. 

 

15.6 Small sample test (t- test) procedure to test the difference between the means of two 

populations using paired observations (dependent samples): 

Step 1:H0: The population means are equal i.e., µ1= µ2. 

Step 2:H1: The population means are not equal i.e.,µ1 ≠ µ2. (Two tailed test) 

   OR 



 

 

 

 

180 

The mean of first population is less than the mean of the second population.  i.e., µ1<µ2. (Left tailed test) 

   OR 

The mean of first population is more than the mean of the second population. i.e., µ1>µ2. (Right tailed test) 

 

Step 3: computation of test statistic; underH0 

 t =  ~ t with (n-1) d.f. 

Where,  is the mean of the difference between paired observation.  

 is the standard deviation of difference of samples. 

    i.e.,  =  and d = x1 – x2 

Step 4: Depending on the alternative hypothesis (H1), degrees of freedom and level of significance (α), the 

critical (Table)  value i.e., ±  (for two tailed) or (for one tailed) is chosen.                                

Step 5: If the calculated value of the test statistic (t) lies in the acceptance region, then we do not rejectH0. 

Otherwise we reject H0. 

 i.e., for two tailed test, if -  ≤ t ≤ + , then we do not reject H0. 

 i.e., for left tailed test, if t ≥ -   then we do not reject H0. 

 i.e., for Right tailed test, if t ≤    then we do not reject H0. 

 Otherwise H0 is rejected. 

 

Example 1:The following data represents the blood pressure of 5 persons before and after 

performing yoga. 

Persons P Q R S T 

Blood pressure 

before yoga 

90 90 100 88 99 

Blood pressure 

after yoga 

88 90 95 90 96 

Can we conclude at 5% level of significance that yoga reduces blood pressure? 

Solution:  

Let ‘x1’ be the blood pressure before yoga and ‘x2’ be the blood pressure after yoga. 

H0: Yoga doesn’t reduce blood pressure. i.e., µ1= µ2. 

H1: Yoga reduces blood pressure. i.e., µ1> µ2.(Right tailed test) 

Computation of mean and standard deviation of difference of samples is given in the table below: 

x1 x2 d=x1-x2 d2 

90 88 2 4 

90 90 0 0 

100 95 5 25 

88 90 -2 4 

99 96 3 9 
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  ∑d = 8 ∑ d2 = 42 

 

 =  

UnderH0, the test statistic is 

t =  ~ t with (n-1) d.f. 

 

t =  

 

 

 

Depending on the alternative hypothesis (H1) degrees of freedom (n - 1= 4) and level of 

significance (α = 5%), the critical value is 2.13. 

Since, t value lies in the acceptance region; therefore, we do not reject H0. 

Conclusion: Yoga doesn’t reduce blood pressure. i.e., µ1 = µ2. 

 

Example 2:The following are the data regarding I.Q of 5 students before and after training: 

Student A B C D E 

Before training 121 126 119 137 122 

after training 131 124 121 133 126 

Solution: Let ‘x1’ be the I.Q. of students before training and ‘x2’ be the I.Q. of students after 

training.    

H0: Training doesn’t improve the I.Q. of the students. i.e., µ1 = µ2 

H1: Training improves the I.Q. of the students i.e., µ1 < µ2. (Left tailed test) 

Computation of mean and standard deviation of difference of samples is given below: 

x1 x2 d=x1-x2 d2 

121 131 -10 100 

126 124 2 4 

119 121 -2 4 

137 133 4 16 

122 126 -4 16 

  ∑d = -10 ∑ d2 = 140 

 

 

 =  
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UnderH0, the test statistic is 

t = ~ t with (n-1) d.f. 

t =  

-0.8165 

 

 

Depending on the alternative hypothesis (H1) degrees of freedom (n - 1= 4) and level of 

significance (α = 5%), the critical value is -3.75. 

Since, t value lies in the acceptance region; therefore, we do not reject H0. 

Conclusion: Training doesn’t improve the I.Q. of the students. i.e., µ1 = µ2. 

 

15.7 Small sample (test t- test) procedure to test the significance of an observed 

sample correlation coefficient 

 

Step 1:H0: The population correlation coefficient is zero i.e.,ρ = 0 

Step 2:H1: The population correlation coefficient is not equal to zero i.e.,ρ ≠ 0. 

Step 3: computation of test statistic; underH0 

 t =  ~ t with (n-2) d.f. 

Where, r is sample correlation coefficient which is computed by using Spearman’s rank correlation 

coefficient method. 

Step 4: Depending on the alternative hypothesis (H1), degrees of freedom and level of significance (α), the 

critical (Table)  value i.e., ±  (for two tailed) is chosen.                            

Step 5: If the calculated value of the test statistic (t) lies in the acceptance region, then we do not rejectH0. 

Otherwise we reject H0. 

 i.e., for two tailed test, if -  ≤ t ≤ + , then we do not reject H0. 

 

Remark: The formula for Spearman’s rank correlation coefficient is given by: 

1. If the observations are not repeated, then Spearman’s rank correlation coefficient is 

 
2. If the observations are repeated, then Spearman’s rank correlation coefficient is 

   

Where, d is the difference between the ranks (Rx – Ry) of paired observations, n is the number of 

paired observations and  is the number of times an observation is repeated; i=1,2,3,... 

Example 3: A random sample of 25 pairs of observations from a normal population with 

correlation coefficient 0.7. Is this significant of correlation in the population? 
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Solution: Given: n = 25, r = 0.7 and α = 5% 

H0: The population correlation coefficient is zero i.e.,ρ = 0 

H1: The population correlation coefficient is not equal to zero i.e.,ρ ≠ 0. 

Under H0, the test statistic is 

t =  ~ t with (n-2) d.f. 

t =  

t = 4.7009 

 

 

Depending on the alternative hypothesis (H1) degrees of freedom (n – 2 = 23) and level of 

significance (α = 5%), the critical values are [-2.07, +2.07]. 

Since, t value lies in the rejection region; therefore, we reject H0. 

Conclusion: The population correlation coefficient is not equal to zero i.e.,ρ ≠ 0. 

 

Example 4: The following are the marks obtained by 10 students in science and social tests.  

Marks in 

science 

35 37 38 42 44 46 51 54 55 56 

Marks in 

social 

40 32 39 42 41 31 50 52 46 55 

calculate the rank correlation coefficient for the data given above and test whether the correlation 

coefficient differs significantly or not? 

 

Solution: H0: The correlation coefficient between the marks obtained by 10 students in science and 

social tests does not differs significantly. i.e., ρ = 0 

 H1: The correlation coefficient between the marks obtained by 10 students in science and social tests 

differs significantly i.e., ρ ≠ 0. 

Here, we need to compute the value of r using Spearman’s rank correlation coefficient and is as follows: 

 

 

 

Marks in 

science (x) 

35 37 38 42 44 46 51 54 55 56  

Marks in 

social(y) 

40 32 39 42 41 31 50 52 46 55  

Rx 10 9 8 7 6 5 4 3 2 1  

R 7 9 8 5 6 10 3 2 4 1  

d =Rx – Ry 3 0 0 2 0 -5 1 1 -2 0  

d2 9 0 0 4 0 25 1 1 4 0 ∑ d2 = 44 
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    =    

 r = 0.7333 

 

Under H0, the test statistic is 

t =  ~ t with (n-2) d.f. 

t =  

 
 

Depending on the alternative hypothesis (H1) degrees of freedom (n – 2 = 8) and level of 

significance (α = 5%), the critical values are [-2.31, +2.31]. 

Since, t value lies in the rejection region; therefore, we reject H0. 

Conclusion: The correlation coefficient between the marks obtained by 10 students in science and social 

tests differs significantly i.e.,ρ ≠ 0. 

 

 

Exercise: 

1. A random sample of size 15 taken from a population has a sample mean of 30 and 

standard deviation 4. Test the hypothesis that the population mean is 32. 

2. The mean weekly sales of donuts were 150. After an advertising campaign the mean 

weekly sale in 23 shops for a typical week increased to 175 with standard deviation 10. Is 

this evidence indicating that the advertising campaign successful? 

3. A fertilizer mixing machine is set to give 15kg of potassium for every bag of fertilizer. 

Then 20 such bags are examined. The weight of potassium in each bag (in kg) are: 

13,14,13,15,15,14,16,15,17,13,16,12,15,15,14,17,15,16,15,14. 

Test at 1% level of significance that there is any reason to believe that the machine is 

defective? 

4. Examine whether the means differ significantly for the following data given below: 

 Sample I Sample II 

Sample size 10 8 

Mean 67.2 62.3 

Standard deviation 4.14 4.22 

 

5. A group of 7 persons were given a diet plan A and they weigh 39,43,55,58,65,69 and 68 

kg. Another group of 5 persons from the same locality were given a diet plan B who 

weighs 40,41,47,58 and 60kg. Can you test whether the diet plan B decreases the weight 

significantly? 



 

 

 

 

185 

6. Two new types of rations are fed to sheep. A sample of ten sheep is fed with Type X 

ration and another sample of ten sheep is fed with type Y ration, the gains in weight are 

listed below (in pounds): 

Type X 88 89 93 87 85 93 99 85 91 90 86 

Type Y 85 87 91 89 95 90 89 83 87 84 92 

At 1% level of significance, test whether Type X ration is better than Type Y ration? 

7. Two laboratories P and Q carry out independent estimates of pistachio (in grams) content 

in cassata ice – cream made by a factory. A sample is taken from each batch, halved, and 

the separate halves sent to the two laboratories. The pistachio content in cassata ice – 

cream is obtained by the laboratories is recorded below: 

Batch no 1 2 3 4 5 6 7 8 9 10 

Lab P 7 8 7 6 5 6 7 9 7 5 

Lab Q 9 8 9 6 7 9 8 7 6 6 

Is there a significant difference between the means of pistachio content obtained by the 

two laboratories P and Q? 

8. Following is the data regarding the I.Q. of 7 students before and after meditation: 

Student P Q R S T U V 

I.Q. before 

meditation 

119 121 117 114 123 118 125 

I.Q. after 

meditation 

123 118 121 128 125 117 129 

Test at 1% level of significance that the meditation improves the I.Q of students? 

 

9. Ten students were given intensive coaching and tests were conducted before and after 

coaching. The scores of the tests are given below. Test at 1% level of significance that the 

scores after coaching show an improvement? 

Student A B C D E F G H I J 

Marks before 

coaching 

50 45 50 25 37 46 62 49 70 81 

Marks after 

coaching 

65 51 37 39 51 27 36 45 68 79 

 

10. A random sample of 29 pairs of observations from a bivariate normal population with 

correlation coefficient 0.5. Is this significant of correlation in the population? 

11. A coefficient of correlation of 0.2 is derived from a random sample of 23pairs of 

observations. Is this value of r significant? 

12. The ranks of same 15 students in tests in mathematics(x) and statistics(y) were as follows: 

Ranks 

in x 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Ranks 

in x 

1 10 3 4 4 7 2 6 8 11 15 9 14 12 13 
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      calculate the rank correlation coefficient for the data given above and test whether the 

      correlation coefficient differs significantly or not? 

13. calculate the rank correlation coefficient for the data given below and test whether the 

correlation coefficient differs significantly or not at 1% level of significance? 

X 18 28 35 44 35 26 37 48 

Y  83 51 34 34 34 28 46 47 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNIT 16 

SAMLL SAMPLE TESTS -2 

(Tests for variance(s), goodness of fit, attributes ) 

16.1 Objective 

After completion of this unit, you should know how to perform 

 the significance test for single variance and the equality/ratio of two variances.  

 significance test for goodness of fit  

 significance test for independence of attributes. 

 

16.2 Introduction 

While we deal with small sample sizes(n ≤ 30), it is necessary to consider some assumptions of 

the statistical test being used. For instance, F- test assumes that the data is normally distributed; 

violating this assumption can lead to erroneous results. 
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In other words, small sample tests are useful tools for analysing data when the sample size is 

small. However, it is necessary to choose the appropriate statistical test and consider the 

assumptions of the test to ensure accurate results. 

 

16.3 Chi-square test 

The chi-square test is a statistical hypothesis test which is used to determine whether is there any 

significant association between two or more qualitative variables (attributes). It helps in 

determining whether the observed frequencies of a sample differ significantly from the expected 

frequencies.  

The test compares the observed frequencies in each category to the frequencies that would be 

expected if there were no association between the variables. 

It's important to note that the chi-square test has certain assumptions, such as the independence of 

observations and expected frequencies being reasonably large. Violations of these assumptions 

can affect the validity of the test results. Additionally, there are variations of the chi-square test, 

such as the Fisher's exact test for small sample sizes, which can be used in specific situations. 

In other words, the chi-square test is an important tool for analysing categorical data and 

detecting associations between variables in a wide range of disciplines. 

 

Applications of Chi-Square Test: 

Applications of Chi-Square Test are 

  1. It is used to test whether the population has a given variance. 

2. It is used to test Goodness of fit of a theoretical distribution to an observed 

distribution. 

  3. It is used to test independence of attributes in a m x n contingency table. 

4. It is used for homogeneity test i.e, the chi-square test is used to compare the 

distributions of two or more populations. 

5. In genetics research, the chi-square test is used to analyse observed and 

expected genotype frequencies. 

6. It is used to combine various probabilities obtained from independent 

experiments to give a single test of significance. 

 

16.4. Chi-Square Test procedure to test for single variance: 

Step 1:H0:  The population Variance. i.e.,  

Step 2:H1: The population variance. i.e., ≠.  (Two tailed test) 

   OR 

            The population variance. i.e., < . (Left tailed test) 

   OR 

      The population variance. i.e., >  (Right tailed test) 

 

Step 3: computation of test statistic; underH0 
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 ~ with (n-1) d.f. 

 Where, ‘s’ is the standard deviation of the sample. 

Step 4: Depending on the alternative hypothesis (H1), degrees of freedom and level of 

significance (α), the critical (Table)  value i.e.,    and   for two tailed test or for one 

tailed test is chosen.                                

Step 5: If the calculated value of the test statistic ( ) lies in the acceptance region, then we do 

not rejectH0. Otherwise we reject H0. 

i.e., for two tailed test, if  ≤  ≤  then we do not reject H0. 

i.e., for left tailed test, if  ≥   then we do not reject H0. 

i.e., for Right tailed test, if  ≤    then we do not reject H0, otherwise H0 is rejected. 

 

Example 1: A normal variate has a variance 5. Twenty sample observations of the variate have 

variance 3. Test at 1% level of significance whether the population variance is 5? 

Solution: Given: n = 20,  , and α = 1%. 

H0:  The population Variance is 5. i.e.,  

H1: The population variance is not equal to 5. i.e., ≠ 5. (Two tailed test) 

UnderH0, the test statistic is 

~ with (n-1) d.f. 

    =  

 

 

 
Depending on the alternative hypothesis (H1), degrees of freedom (n - 1= 19) and level of 

significance (α = 1%), the critical values are [6.84, 38.58] 

Since,  value lies in the acceptance region; therefore, we do not reject H0. 

Conclusion: The population Variance is 5. i.e.,   

 

Example 2: The standard deviation of production of sugarcane is assumed to be 12.8 tons. A 

sample of 20 acres showed that the standard deviation 10.6 tons. Test at 1% level of significance 

whether the standard deviation of production of sugarcane is less than 12.8tons. 

Solution: Given: n = 20, σ  , and α = 1%. 

H0:  Standard deviation of production of sugarcane is 12.8 tons. i.e., H0: σ tons. 

H1: Standard deviation of production of sugarcane is less than 12.8 tons.  

i.e. H1: σ tons.(left tailed test) 
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UnderH0, the test statistic is 

~ with (n-1) d.f. 

    =  

 13.7158 

 

 
Depending on the alternative hypothesis (H1), degrees of freedom (n - 1= 19) and level of 

significance (α = 1%), the critical value is 7.63 

Since,  value lies in the acceptance region; therefore, we do not reject H0. 

Conclusion: Standard deviation of production of sugarcane is 12.8 tons. i.e.,σ tons. 

 

Example 3: Following are the points scored by five players in a basketball match:5, 13,

 1, 7, 9 

Test whether the population variance is more than 10 at 5% level of significance? 

Solution: Given: n = 5, σ2 ,and α = 5%. 

Let ‘x’ denotes the points scored by five players in a basketball match. 

Computation of sample variance is given in the table below 

X x2 

5 25 

13 169 

1 1 

7 49 

9 81 

∑x = 35 ∑ x2 = 325 

 -  =  = 16 

H0:  The population Variance is 10. i.e.,   

H1: The population variance is not equal to 5. i.e., > 10. (Right tailed test) 

UnderH0, the test statistic is 

~ with (n-1) d.f. 

    =  
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Depending on the alternative hypothesis (H1), degrees of freedom (n – 1 = 4) and level of 

significance (α = 5%), the critical value is 9.49 

Since,  value lies in the acceptance region; therefore, we do not reject H0. 

Conclusion: The population Variance is 10. i.e.,   

 

Example 4: Following are the production of paddy in 8 different years  

6 9 13 7 14 12 3  and  8 tons. 

Test the hypothesis that the standard deviation is more than 3 tons? 

Solution: Given: n = 8, σ ,and α = 5%. 

Let ‘x’ denotes the production of paddy in 8 different years 

H0:  The population standard deviation is 3. i.e.,   

H1: The population standard deviation is more than 3. i.e., σ >2.2. (Right tailed test) 

Here,  

  

 

   

6 -3 9 

9 0 0 

13 4 16 

7 -2 4 

14 5 25 

12 3 9 

3 -6 36 

8 -1 1 

∑x = 72  ∑  = 100 

 

UnderH0, the test statistic is 

~ with (n-1) d.f. 

  

 
 

 

Depending on the alternative hypothesis (H1), degrees of freedom (n - 1= 7) and level of 

significance (α = 5%), the critical value is 14.07 

Since,  value lies in the rejection region; therefore, we reject H0. 

Conclusion: The population standard deviation is more than 3. i.e., σ > 2.2. 

 

16.5 Chi-Square Test for goodness of fit: 
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This test helps us to analyse how well the theoretical distributions such as Uniform, Binomial, 

Poisson, Normal, etc., fit empirical distribution, i.e, those obtained from the sample data. The 

quantity   describes the magnitude of the discrepancy between theory and observation. 

 

Conditions for applying Chi-Square Test for goodness of fit: 

1. The total frequency should be reasonably large. 

2. Theoretical frequency should me greater than or equal to 5. If any theoretical frequency is 

less than 5, then it should be pooled with the adjacent frequency. 

3. If any parameter is estimated from the observed distribution, corresponding to every such 

estimation, one degree of freedom should be reduced. 

 

15.8.1 Chi-Square Test procedure to test for Goodness of fit: 

Step 1:H0:  The theoretical distribution is a good fit to the observed frequency distribution.  

Step 2:H1: The theoretical distribution is not a good fit to the observed frequency distribution.  

Step 3: computation of test statistic; underH0 

  ~ with (n-c) d.f. 

Where, ‘n’ is the number of terms in the after pooling the expected frequencies. 

 ‘c’ is the number of independent constraints, is the observed frequency in the data given and 

is the expected frequency. 

Step 4: Depending on the alternative hypothesis (H1), degrees of freedom and level of 

significance (α), the critical (Table) value i.e., (right tail) is chosen.                                

Step 5: If the calculated value of the test statistic ( ) lies in the acceptance region, then we do 

not rejectH0. Otherwise we reject H0. 

 

Remark: This test is always Right tailed test, i.e., if  ≤    , then we do not reject H0. 

 Otherwise H0 is rejected. 

 

Example 5: A Human Resource manager is interested to determine whether the absenteeism is 

uniformly distributed throughout the week in production domain of his company. So, he collects 

the data from past year records which is shown in the table given below: 

Day of 

the week 

Sunday Monday Tuesday Wednesday Thursday Friday Saturday 

No. Of 

absentees: 

7 8 11 12 5 13 14 

Test whether the absence is uniformly distributed throughout the week at 1% level of 

significance? 

Solution: H0:  Absence is uniformly distributed throughout the week. 

 H1: Absence is not uniformly distributed throughout the week. 

On the basis of H0 the expected frequencies are absentees for all the days. 
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To apply  test we need the following table: 

    

 
7 10 -3 9 0.9 

8 10 -2 4 0.4 

11 10 1 1 0.1 

12 10 2 4 0.4 

5 10 5 25 2.5 

13 10 3 9 0.9 

14 10 4 16 1.6 

70 70   

 
 

Under H0, the test statistic is: 

 

 

 
Depending on the alternative hypothesis (H1), degrees of freedom (n-c = 7-1 =6) and level of 

significance (α = 1%), the critical (Table) value is 16.812 

Since,  value lies in the acceptance region; therefore, we do not reject H0. 

Conclusion: Absence is uniformly distributed throughout the week. 

 

Example 6: Records of 800 families about the number of male births in a family of four children 

are listed below: 

Male births 0 1 2 3 4 

No. Of families 32 178 290 236 64 

Test the hypothesis that the male and female births are equally likely at 5 % level of 

significance. 

Solution: H0: Male and female births are equally likely. 

     H1: Male and female births are not equally likely. 

On the basis of hypothesis, we consider p = 0.5 and q = 0.5; which follows binomial distribution 

with parameters n = 4 and p = 0.5. 

To find the expected frequencies we need to fit the binomial distribution which is as follows: 

The probability mass function is: 

P(x) =  
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P(x) =  

On simplification, 

P(x) =  

P(0) =  

E(0) = N. P(0) = 800 x  = 50 

By using recurrence relation for expected frequencies 

E(x) =  

E(1) =  ; E(2) =  

E(3) =  ;  E(4) =  

To apply  test we need the following table: 

    

 
32 50 -18 324 6.48 

178 200 -22 484 2.42 

290 300 -10 100 0.33 

236 200 36 1296 6.48 

64 50 14 196 3.92 

800 800   19.63 

 

Under H0, the test statistic is: 

 
 

 
Depending on the alternative hypothesis (H1), degrees of freedom (n-c = 5-1 =4) and level of 

significance (α = 5%), the critical (Table) value is 9.49 

Since,  value lies in the rejection region; therefore, we reject H0. 

Conclusion: Male and female births are not equally likely. 

 

Example 7: A book has 700 pages. The number pages with misprints are recorded as follows: 

No. Of 

misprints 

0 1 2 3 4 5 

No. of 616 70 10 2 1 1 
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pages 

Fit a Poisson distribution to the data given and test the goodness of fit. 

Solution: Null HypothesisH0:  Poisson distribution is a good fit. 

Alternative hypothesisH1: Poisson distribution is not a good fit. 

To find the expected number of misprints in each page of the book is as follows: 

Mistakes (x) No. Of pages (f) Fx 

0 616 0 

1 70 70 

2 10 20 

3 2 6 

4 1 4 

5 1 5 

 N = 700 ∑ fx =105 

Expected mistakes λ =  

Calculations of expected frequencies for misprints from 0 to 5 are as follows: 

Here e-λ = 0.8607; implies, 

 
E(0) = N.p(0) = 700 x 0.8607 = 602.5 

By using recurrence relation for expected frequencies we have, 

E(x) = ; where x =1,2,... 

E(1) =  = 90.38;  E(2) =  = 6.78 

E(3) =  = 0.34; E(4) =  = 0.013 

E(5) =  = 0 

 

To apply  test we need the following table: 

    

 

616          602.5 13.50 182.25 0.302 

70          90.38 -20.38 415.34 4.595 

10          6.78 3.22 10.37 1.529 

2          0.34    

         1       

4 

       0.013      0.353 3.65 13.32 37.733 
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1             0    

    44.159 

 

Under H0, the test statistic is: 

 

 

 

 
Depending on the alternative hypothesis (H1), degrees of freedom (n-c = 6-1-3=2) and level of 

significance (α = 5%), the critical (Table) value is 5.991 

Since,  value lies in the rejection region; therefore, we reject H0. 

Conclusion: Poisson distribution is not a good fit. 

 

16.6 Chi-Square Test for independence of attributes: 

The chi-square test for independence of attributes is a statistical test used to determine whether 

there is a relationship between two categorical variables. It is also known as the chi-square test of 

association or the chi-square test of independence. 

The   test is based on the principle that if there is no association between two categorical 

variables, then the distribution of frequencies within each category of one variable should be 

independent of the distribution of frequencies within each category of the other variable.    

Some of the examples are: 

 Success in examination and number of hours studied are independently distributed 

or not. 

 Is there any association between heights of father and son? 

 Is there any association between marriage and happiness? 

 Is there any association between gender and smoking habits etc., 

 

Test procedure to test for independence of attributes: 

Step 1:H0:  The two attributes “A” and “B” are independent and identically distributed. 

Step 2:H1: The two attributes “A” and “B” are not independent and identically distributed. 

Step 3: computation of test statistic;  

For 2 x 2 contingency table i.e., 

 

  Attribute A Total 

Attribute B A B a+b 

 C D c+d 

Total a +c b+d a+b+c+d  = N 
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Under H0, the test statistic is 

 ~ with (1) d.f. 

Step 4: Depending on the alternative hypothesis (H1), degrees of freedom and level of 

significance (α), the critical (Table) value i.e., (right tail) is chosen.                                

Step 5: If the calculated value of the test statistic ( ) lies in the acceptance region, then we 

do not reject H0. Otherwise we reject H0. 

 

Remark: This test is always Right tailed test, i.e., if  ≤    , then we do not reject H0. 

Otherwise H0 is rejected. The test statistic of Chi- square test for independence of attributes 

for “m x n” contingency table is: 

Under H0, 

 

Where,  

is the total of cell frequencies of ith row, and  is the total of cell frequencies of jth column. 

 

16.6.1 Yate’s correction: 

In a 2 x 2 contingency table, the number of d.f is 1. If any one of the theoretical cell frequencies 

is less than 5, then use of pooling method for  – test results in with 0 (zero) d.f, which is 

meaningless. 

In this case we apply a correction due to F.Yates (1934), which is usually known as Yate’s 

correction for continuity”. Thus if any one of the expected frequency is below 5, then we need 

correction in 2 x 2 contingency table due to “Yates”. 

Here we add 0.5 to the cell frequency which is less than 5 and then adjusting for the remaining 

cell frequencies accordingly. Then – test is applied without pooling method. 

test statistic now becomes, 

 

 

 

Example 8: From the following data test whether ‘education’ and ‘employment’ are independent 

at 1% level of significance. 

 Employment  

Education Employed Unemployed 

Educated 30 10 

Uneducated 20 40 
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Solution:  

H0: Education and Employment are independent. 

H1: Education and Employment are not independent. 

Under H0, the test statistic is: 

~ with (1) d.f.   

 

 

 

 
Depending on the alternative hypothesis (H1), degrees of freedom (1 d.f) and level of significance 

(α = 1%), the critical (Table) value is 6.63 

Since,  value lies in the rejection region; therefore, we reject H0. 

Conclusion: Education and Employment are not independent. 

 

Example 8: A certain drug is claimed to be effective in curing cold. In an experiment, 164 people 

with cold, half of them were given the drug and rest of them were treated with sugar pills. The 

patients’ reaction to the treatment are recorded in the following table. Test the hypothesis that the 

drug is not better than the sugar pills for curing cold.   

Type   Effect of drugs  

 Helped  Harmed   No effect 

Drug 52 10 20 

Sugar pills 44 12 26 

Solution: H0: The drug is not better than the sugar pills for curing cold.  

H1: The drug is better than the sugar pills for curing cold. 

Type   Effect of drugs   

 Helped  Harmed   No effect Total  

Drug 52 10 20 82 

Sugar pills 44 12 26 82 

Total  96 22 46 N = 164 

Here the frequencies are arranged in 2 x 3 contingency table. Hence the degrees of freedom is 

(2-1)(3-1) = 2 d.f 

Under H0, the test statistic is: 

 

To compute expected frequencies, we have, 
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E(52) =  

Similarly, E (44) = 48;   E (10) = 11;     E (12) = 11;     E (20) = 23;      E (26) = 23 

To apply  test we need the following table: 

Type Effect of 

drugs 

    

 
 Helped 52 48 4 16 0.3333 

Drug Harmed 10 11 1 1 0.0909 

 No effect 20 23 3 9 0.3913 

Sugar Helped 44 48 4 16 0.3333 

  Pills Harmed 12 11 1 1 0.0909 

 No effect 26 23 3 9 0.3913 

Total   164    1.631 

 

 

 

 

Depending on the alternative hypothesis (H1), degrees of freedom (2 d.f) and level of significance 

(α = 5%), the critical (Table) value is 5.991 

Since,  value lies in the acceptance region; therefore, we  do not reject H0. 

Conclusion: The drug is not better than the sugar pills for curing cold. 

 

16.5 Test significance based on F – distribution: 

To test the significance of the F distribution, we would typically use an F-test. The F-test is a 

statistical test that compares the variances of two or more samples to determine if they are 

significantly different from each other. 

 

Applications of F-distribution: 

It has the following applications in statistical theory. 

5. To test the equality of two population variances. 

6. To test the significance of an observed multiple correlation coefficient. 

7. To test the linearity of regression. 

8. To test the equality of several means. 

 

Remark: 

The reciprocal property of F-distribution is  
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16.5.1 F – test for equality of two population variances: 

Step 1:H0: The population variances are equal  

Step 2:H1: The population variances are not equal  

Step 3: computation of test statistic; underH0 

 Snedecor’s F-distribution with (n1-1, n2-1) d.f 

Where,   and  

    

Step 4: Depending on the alternative hypothesis (H1), degrees of freedom (n1-1, n2-1) and level 

of significance (α), the critical (Table)  value i.e.,    and   for two tailed test or for one 

tailed test is chosen.                                

Step 5: If the calculated value of the test statistic ( ) lies in the acceptance region, then we do 

not rejectH0. Otherwise we reject H0. 

 i.e., for two tailed test, if  ≤ F ≤  then we do not reject H0. 

 i.e., for left tailed test, if F ≥   then we do not reject H0. 

 i.e., for Right tailed test, if F ≤    then we do not reject H0. 

 Otherwise H0 is rejected. 

 

Example 5: The following are the marks of students of two class X and Y. Test whether the 

variances of marks of both the classes differ significantly at 2% level of significance. 

Class X 80.51 80.46 80.75 80.50 80.36 80.32 82.6 83.4 

Class y 85.1 80.28 84.6 83.5 89.5 85.6 80.27 - 

 

Solution: Given: ,  and α = 2%.  

Here  = 81.1125 and  = 84.1214 

H0: The variances of marks of both the classes doesn’t differ significantly  

H1: The variances of marks of both the classes  differ significantly  
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Under H0, the test statistic is: 

 Snedecor’s F-distribution 

with (n1-1, n2-1) d.f 

 

 

Where,   = 7585.781033 

  = 6989.16287 

 

    =  = 1.0853 

Depending on the alternative hypothesis (H1), degrees of freedom (n1-1, n2-1 = (7,6)) and level of 

significance (α), the critical (Table)  values are i.e.,    and . 

Since, F value lies in the acceptance region; therefore, we do not reject H0. 

Conclusion: The variance of marks of both the classes doesn’t differ significantly.       

. 

 

Example 6: An experiment was conducted on two groups of plants to compare the growths. Both 

the plants were given same amount of water and sunlight with the variances in terms of carbon 

dioxide in normal and enriched air. 

The following table gives growth of plants for group1(presence of normal air) and group2 

(presence of enriched air). Test whether the variance of growth of plants differs significantly 

across the group at 1% level of significance. 

Plants with normal air (x): 4.67 4.21 2.18 3.91 4.07 5.24 2.94 4.71 4.04

 5.79 3.80 4.38 

Plants with enriched air(y): 5.04        4.52  6.18 7.01 4.36 1.81 6.22 5.7   

Solution: Given ,  and α = 1%. Here  = 4.1616 and  = 5.105 

H0: The variances of growth of plants doesn’t differ significantly  

H1: The variances of growth of plants differ significantly  

Under H0, the test statistic is: 

 Snedecor’s F-distribution with (n1-

1, n2-1) d.f 

Where,   = 0.4504 

  = 2.5914 
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        =  

 

Depending on the alternative hypothesis (H1), degrees of freedom (n1-1, n2-1 = (11,7)) and level 

of significance (α), the critical (Table)  values are i.e.,    and .605. 

Since, F value lies in the rejection region; therefore, we reject H0. 

Conclusion: The variances of growth of plants differ significantly  

 

Exercise: 

1. A random sample of size 20 is taken from a population gives the sample standard 

deviation 7.5. Test the hypothesis that the population standard deviation is 9 at 1% level 

of significance. 

2. Weights in pounds of 10 sheep are as follows:  

85, 92, 87, 101, 98, 113, 115, 87, 93, 110 

Can we conclude that the variance of the distribution of weights of sheep is lesser than 50 

pounds? 

3. The inner diameter of 9 ball bearings was 20.1, 20.35,  20.6,  20.65,  20.32,  20.11,  20.22, 

20.48 and 20.23 millimetres. Test the hypothesis that the standard deviation is more than 

3 millimetres at 5% level of significance. 

4. A normal variate has standard deviation 3. Fifteen sample observations of the variate have 

standard deviation 4. Test at 1% level of significance whether the population standard 

deviation is 3. 

5. In 150 throws of a single die, the following distribution of faces were obtained. 

Faces 1 2 3 4 5 6 Total 

Frequency 40 35 18 20 22 15 150 

Test at 1% level of significance that the die is unbiased. 

6. Demand for a particular product in a market was found to vary from day– to – day. In a 

sample study the following information was obtained: 

Days  Monday Tuesday Wednesday Thursday Friday Saturday 

No. Of  products 

demanded 

1234 1122 1100 1200 1232 1412 

7. Fit a binomial distribution to the following data and test the goodness of fit. 

X 0 1 2 3 4 5 6 7 8 9 10 total 

F 2 5 6 10 15 20 18 12 10 9 3 110 

8. When the first proof of 395 pages of a book of 1500 pages were read, the distribution of 

printing mistakes was found to be as follows: 

No of mistakes per page 0 1 2 3 4 5 6 

No. Of  pages 270 75 35 8 4 2 1 

Fit a Poisson distribution to the above data and test the goodness of fit at 5% level of 

significance. 
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9. The following is the data regarding family condition and examination result o 78 students. 

Test whether family conditions and results are independent. 

 

 

 

 

 

 

10. An opinion poll was conducted to find the reaction to a proposed civic reform in 100 

members of each of two political parties. The information is tabulated as follows: 

 Favourable  Unfavourable  Total  

Party X 42 58 100 

Party Y 60 40 100 

Test whether political parties and the reaction to a proposed civic reform are independent 

at 1% level of significance. 

11. A food service manager for a baseball park wants to know if there is a relationship 

between gender and the preferred condiment on the hot dog. The following table 

summarises the result. Test the hypothesis at 5% level of significance. 

   Condiment    

  Ketchup Mustard  Relish Total  

Gender  Male  25 19 8 52 

 Female  15 23 10 48 

 Total  40 42 18 100 

12. A movie producer is bringing out new movie in order to put this in advertising campaign, 

he wants to determine whether the movie will appeal to a particular age group or whether 

the movie will appeal equally to all age group. 

The producer takes a random sample from person’s attending the preview of the movie 

and obtained the following results: 

   Age group  (in years)  

  Below 20 20-40 40-60 60 and above 

Taste  Like  28 146 78 48 

 Dislike  54 22 42 22 

 Indifferent 20 10 10 20 

Test the hypothesis at 1% level of significance. 

 

14. The following is the data regarding the weights (in grams) of strawberries in 2 boxes. 

Assume that the weight follows normal distribution. Test whether the variance of 

strawberries in Box1 is more than that of Box2 at 1 % level of significance. 

Box1: 21.7 21 21.2 20.7 20.4 21.9 20.2 21.6 20.6 

Box2: 21.5 20.5 20.3 20.1 20 20.4 20.3 

Family Examination   Result 

Conditions Pass  Fail  

Good  20 18 

Bad  15 25 



 

 

 

 

203 

15. The following data gives 45 ceramic strength measurements for two batches of material 

with the following summary statistics: 

 No. of observations Mean Standard Deviation 

Batch 1 24 518.3371 50.2311 

Batch 2 21 499.8912 49.5010 

Test whether the variances for the two batches differs significantly at 5% level of 

significance. 

16. Two random samples from normal distribution gives the following information: 

Sample Sample size Sample variance 

X 13 6.32 

Y 9 4.68 

Test whether the variance of sample X is less than that of sample Y at 10 % level of 

significance. 

17. Two random samples from normal distribution gives the following information: 

Stripe type Sample size Sample variance 

A 15 2.1 

B 20 1.6 

Test whether the variance of strip A and strip B differs significantly at 5 % level of 

significance. 

 

 

 

 

 

 

 

 

Table 1: Standard Normal Distribution Table 0 to z  

 

 
                                                                                                     - ∞                             0       z                       ∞ 

z         .00        .01         .02        .03        .04         .05       .06         .07         .08        .09 

0.0    .0000    .0040    .0080    .0120    .0160     .0199    .0239     .0279     .0319     .0359  

0.1    .0398    .0438    .0478    .0517    .0557     .0596    .0636     .0675     .0714     .0753 

0.2    .0793    .0832    .0871    .0910    .0948     .0987    .1026     .1064     .1103     .1141  

0.3    .1179    .1217    .1255    .1293    .1331     .1368    .1406     .1443     .1480     .1517  

0.4    .1554    .1591    .1628    .1664    .1700     .1736    .1772     .1808     .1844     .1879  

0.5    .1915    .1950    .1985    .2019    .2054     .2088    .2123     .2157     .2190     .2224  

0.6    .2257    .2291    .2324    .2357    .2389     .2422    .2454     .2486     .2517     .2549  

0.7    .2580    .2611    .2642    .2673    .2704     .2734    .2764     .2794     .2823     .2852  

0.8    .2881   .2910     .2939    .2967    .2995     .3023    .3051     .3078     .3106     .3133  

0.9    .3159    .3186    .3212    .3238    .3264     .3289    .3315     .3340     .3365     .3389  

1.0    .3413    .3438    .3461    .3485    .3508     .3531    .3554     .3577     .3599     .3621  

1.1    .3643    .3665    .3686    .3708    .3729     .3749    .3770     .3790     .3810     .3830  
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1.2    .3849    .3869    .3888    .3907    .3925     .3944    .3962     .3980     .3997     .4015  

1.3    .4032    .4049    .4066    .4082    .4099     .4115    .4131     .4147     .4162     .4177  

1.4    .4192    .4207    .4222    .4236    .4251     .4265    .4279     .4292     .4306     .4319  

1.5    .4332    .4345    .4357    .4370    .4382     .4394    .4406     .4418     .4429     .4441  

1.6    .4452    .4463    .4474    .4484    .4495     .4505    .4515     .4525     .4535     .4545  

1.7    .4554   .4564    .4573     .4582    .4591     .4599    .4608     .4616     .4625     .4633  

1.8    .4641   .4649    .4656     .4664    .4671     .4678    .4686     .4693     .4699     .4706  

1.9    .4713   .4719    .4726     .4732    .4738     .4744    .4750     .4756     .4761     .4767  

2.0    .4772   .4778    .4783     .4788    .4793     .4798    .4803     .4808     .4812     .4817  

2.1    .4821   .4826    .4830    .4834    .4838      .4842    .4846     .4850     .4854     .4857  

2.2    .4861   .4864    .4868    .4871     .4875     .4878    .4881     .4884     .4887     .4890  

2.3    .4893   .4896    .4898    .4901     .4904     .4906    .4909     .4911     .4913     .4916  

2.4    .4918    .4920   .4922    .4925     .4927     .4929    .4931     .4932     .4934     .4936  

2.5    .4938    .4940   .4941    .4943     .4945     .4946    .4948     .4949     .4951     .4952  

2.6    .4953    .4955   .4956    .4957     .4959     .4960    .4961     .4962     .4963     .4964  

2.7    .4965    .4966   .4967    .4968     .4969     .4970    .4971     .4972     .4973     .4974  

2.8    .4974    .4975   .4976    .4977     .4977     .4978    .4979     .4979     .4980     .4981  

2.9    .4981   .4982    .4982    .4983     .4984     .4984    .4985     .4985     .4986     .4986  

3.0    .4987   .4987    .4987    .4988     .4988     .4989    .4989     .4989     .4990     .4990  

3.1    .4990   .4991    .4991    .4991     .4992     .4992    .4992     .4992     .4993     .4993  

3.2    .4993   .4993    .4994    .4994     .4994     .4994    .4994     .4995     .4995     .4995  

3.3   .4995   .4995     .4995    .4996     .4996     .4996    .4996     .4996     .4996     .4997  

3.4   .4997   .4997     .4997    .4997    .4997      .4997    .4997     .4997     .4997     .4998  

3.5   .4998   .4998     .4998    .4998    .4998      .4998    .4998     .4998     .4998     .4998  

 

 

 

 

 

 

 

Table 2: Student’s t-distribution table 

    Level of significance( ) 

df  0.1 0.05 0.025 0.02 0.01 0.005 0.0025 0.001 
1 3.078 6.314 12.71 15.89 31.82 63.66 127.3 318.3 

2 1.886 2.92 4.303 4.849 6.965 9.925 14.09 22.33 

3 1.638 2.353 3.182 3.482 4.541 5.841 7.453 10.21 
4 1.533 2.132 2.776 2.999 3.747 4.604 5.598 7.173 

5 1.476 2.015 2.571 2.757 3.365 4.032 4.773 5.893 

6 1.44 1.943 2.447 2.612 3.143 3.707 4.317 5.208 

7 1.415 1.895 2.365 2.517 2.998 3.499 4.029 4.785 
8 1.397 1.86 2.306 2.449 2.896 3.355 3.833 4.501 

9 1.383 1.833 2.262 2.398 2.821 3.25 3.69 4.297 

10 1.372 1.812 2.228 2.359 2.764 3.169 3.581 4.144 
11 1.363 1.796 2.201 2.328 2.718 3.106 3.497 4.025 

12 1.356 1.782 2.179 2.303 2.681 3.055 3.428 3.93 

13 1.35 1.771 2.16 2.282 2.65 3.012 3.372 3.852 
14 1.345 1.761 2.145 2.264 2.624 2.977 3.326 3.787 

15 1.341 1.753 2.131 2.249 2.602 2.947 3.286 3.733 
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16 1.337 1.746 2.12 2.235 2.583 2.921 3.252 3.686 

17 1.333 1.74 2.11 2.224 2.567 2.898 3.222 3.646 

18 1.33 1.734 2.101 2.214 2.552 2.878 3.197 3.611 

19 1.328 1.729 2.093 2.205 2.539 2.861 3.174 3.579 
20 1.325 1.725 2.086 2.197 2.528 2.845 3.153 3.552 

21 1.323 1.721 2.08 2.189 2.518 2.831 3.135 3.527 

22 1.321 1.717 2.074 2.183 2.508 2.819 3.119 3.505 
23 1.319 1.714 2.069 2.177 2.5 2.807 3.104 3.485 

24 1.318 1.711 2.064 2.172 2.492 2.797 3.091 3.467 

25 1.316 1.708 2.06 2.167 2.485 2.787 3.078 3.45 
26 1.315 1.706 2.056 2.162 2.479 2.779 3.067 3.435 

27 1.314 1.703 2.052 2.15 2.473 2.771 3.057 3.421 

28 1.313 1.701 2.048 2.154 2.467 2.763 3.047 3.408 

29 1.311 1.699 2.045 2.15 2.462 2.756 3.038 3.396 
30 1.31 1.697 2.042 2.147 2.457 2.75 3.03 3.385 

40 1.303 1.684 2.021 2.123 2.423 2.704 2.971 3.307 

50 1.295 1.676 2.009 2.109 2.403 2.678 2.937 3.261 
60 1.296 1.671 2 2.099 2.39 2.66 2.915 3.232 

80 1.292 1.664 1.99 2.088 2.374 2.639 2.887 3.195 

100 1.29 1.66 1.984 2.081 2.364 2.626 2.871 3.174 

1000 1.282 1.646 1.962 2.056 2.33 2.581 2.813 3.098 
inf. 1.282 1.64 1.96 2.054 2.326 2.576 2.807 3.091 

 

 

 

 

 

 

 

 

 

Critical values of Chi-Square distribution 

    Level of significance( ) 

df  0.995 0.99 0.975 0.95 0.05 0.025 0.01 0.005 

1 0.04393 0.03157 0.03982 0.02393 3.841 5.024 6.635 7.879 

2 0.01 0.0201 0.0506 0.103 5.991 7.378 9.21 10.597 

3 0.0717 0.115 0.216 0.352 7.815 9.348 11.345 12.838 

4 0.207 0.297 0.484 0.711 9.488 11.143 13.277 14.86 

5 0.412 0.554 0.831 1.145 11.07 12.832 15.086 16.75 

6 0.676 0.872 1.237 1.635 12.592 14.449 16.812 18.548 

7 0.989 1.239 1.69 2.167 14.067 16.013 18.475 20.278 

8 1.344 1.646 2.18 2.733 15.307 17.535 20.09 21.955 

9 1.735 2.088 2.7 3.325 16.919 19.023 21.666 23.589 

10 2.156 2.558 3.247 3.94 18.307 20.483 23.209 25.188 

11 2.603 3.053 3.816 4.575 19.675 21.92 24.725 26.757 

12 3.074 3.571 4.404 5.226 21.026 23.337 26.217 28.3 
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13 3.565 4.107 5.009 5.892 22.362 24.736 27.688 29.819 

14 4.075 4.66 5.629 6.571 23.685 26.119 29.141 31.319 

15 4.601 5.229 6.262 7.261 24.996 27.488 30.578 32.801 

16 5.142 5.812 6.908 7.962 26.296 28.845 32 34.267 

17 5.697 6.408 7.564 8.672 27.587 30.191 33.409 35.718 

18 6.297 7.015 8.231 9.39 28.869 31.526 34.805 37.156 

19 6.844 7.633 8.907 10.117 30.144 32.852 36.191 38.582 

20 7.434 8.26 9.591 10.851 31.41 34.17 37.566 39.997 

21 8.034 8.897 10.283 11.591 32.671 35.479 38.932 41.401 

22 8.643 9.542 10.982 12.338 33.924 36.781 40.289 42.796 

23 9.26 10.196 11.689 13.091 35.172 38.076 41.638 44.181 

24 9.886 10.856 12.401 13.848 36.415 39.364 42.98 45.558 

25 10.52 11.524 13.12 14.611 37.652 40.646 44.314 46.928 

26 11.16 12.198 13.844 15.379 38.885 41.923 45.642 48.29 

27 11.808 12.879 14.573 16.151 40.113 43.194 46.963 49.645 

28 12.461 13.565 15.308 16.928 41.337 44.461 48.278 50.993 

29 13.121 14.256 16.047 17.708 42.557 45.722 49.588 52.336 

30 13.787 14.953 16.791 18.493 43.773 46.979 50.892 53.672 

 

 

 

 

 

 

 

 

 

F Tablefor α =0.05 

 

/ df1=1 2 3 4 5 6 7 8 9 1

0 

1

2 

1

5 

2

0 

2

4 

3

0 

4

0 

6

0 

120 ∞ 

df2=1 161.4476 199.5 215.7073 224.5832 230.1619 233.986 236.7684 238.8827 240.5433 241.8817 243.906 245.9499 248.0131 249.0518 250.0951 251.1432 252.1957 253.2529 254.31
44 

2 18.5128 19 19.1643 19.2468 19.2964 19.3295 19.3532 19.371 19.3848 19.3959 19.4125 19.4291 19.4458 19.4541 19.4624 19.4707 19.4791 19.4874 19.495
7 

3 10.128 9.5521 9.2766 9.1172 9.0135 8.9406 8.8867 8.8452 8.8123 8.7855 8.7446 8.7029 8.6602 8.6385 8.6166 8.5944 8.572 8.5494 8.5264 

4 7.7086 6.9443 6.5914 6.3882 6.2561 6.1631 6.0942 6.041 5.9988 5.9644 5.9117 5.8578 5.8025 5.7744 5.7459 5.717 5.6877 5.6581 5.6281 

5 6.6079 5.7861 5.4095 5.1922 5.0503 4.9503 4.8759 4.8183 4.7725 4.7351 4.6777 4.6188 4.5581 4.5272 4.4957 4.4638 4.4314 4.3985 4.365 

6 5.9874 5.1433 4.7571 4.5337 4.3874 4.2839 4.2067 4.1468 4.099 4.06 3.9999 3.9381 3.8742 3.8415 3.8082 3.7743 3.7398 3.7047 3.6689 

7 5.5914 4.7374 4.3468 4.1203 3.9715 3.866 3.787 3.7257 3.6767 3.6365 3.5747 3.5107 3.4445 3.4105 3.3758 3.3404 3.3043 3.2674 3.2298 

8 5.3177 4.459 4.0662 3.8379 3.6875 3.5806 3.5005 3.4381 3.3881 3.3472 3.2839 3.2184 3.1503 3.1152 3.0794 3.0428 3.0053 2.9669 2.9276 

9 5.1174 4.2565 3.8625 3.6331 3.4817 3.3738 3.2927 3.2296 3.1789 3.1373 3.0729 3.0061 2.9365 2.9005 2.8637 2.8259 2.7872 2.7475 2.7067 

10 4.9646 4.1028 3.7083 3.478 3.3258 3.2172 3.1355 3.0717 3.0204 2.9782 2.913 2.845 2.774 2.7372 2.6996 2.6609 2.6211 2.5801 2.5379 

11 4.8443 3.9823 3.5874 3.3567 3.2039 3.0946 3.0123 2.948 2.8962 2.8536 2.7876 2.7186 2.6464 2.609 2.5705 2.5309 2.4901 2.448 2.4045 

12 4.7472 3.8853 3.4903 3.2592 3.1059 2.9961 2.9134 2.8486 2.7964 2.7534 2.6866 2.6169 2.5436 2.5055 2.4663 2.4259 2.3842 2.341 2.2962 
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13 4.6672 3.8056 3.4105 3.1791 3.0254 2.9153 2.8321 2.7669 2.7144 2.671 2.6037 2.5331 2.4589 2.4202 2.3803 2.3392 2.2966 2.2524 2.2064 

14 4.6001 3.7389 3.3439 3.1122 2.9582 2.8477 2.7642 2.6987 2.6458 2.6022 2.5342 2.463 2.3879 2.3487 2.3082 2.2664 2.2229 2.1778 2.1307 

15 4.5431 3.6823 3.2874 3.0556 2.9013 2.7905 2.7066 2.6408 2.5876 2.5437 2.4753 2.4034 2.3275 2.2878 2.2468 2.2043 2.1601 2.1141 2.0658 

16 4.494 3.6337 3.2389 3.0069 2.8524 2.7413 2.6572 2.5911 2.5377 2.4935 2.4247 2.3522 2.2756 2.2354 2.1938 2.1507 2.1058 2.0589 2.0096 

17 4.4513 3.5915 3.1968 2.9647 2.81 2.6987 2.6143 2.548 2.4943 2.4499 2.3807 2.3077 2.2304 2.1898 2.1477 2.104 2.0584 2.0107 1.9604 

18 4.4139 3.5546 3.1599 2.9277 2.7729 2.6613 2.5767 2.5102 2.4563 2.4117 2.3421 2.2686 2.1906 2.1497 2.1071 2.0629 2.0166 1.9681 1.9168 

19 4.3807 3.5219 3.1274 2.8951 2.7401 2.6283 2.5435 2.4768 2.4227 2.3779 2.308 2.2341 2.1555 2.1141 2.0712 2.0264 1.9795 1.9302 1.878 

20 4.3512 3.4928 3.0984 2.8661 2.7109 2.599 2.514 2.4471 2.3928 2.3479 2.2776 2.2033 2.1242 2.0825 2.0391 1.9938 1.9464 1.8963 1.8432 

21 4.3248 3.4668 3.0725 2.8401 2.6848 2.5727 2.4876 2.4205 2.366 2.321 2.2504 2.1757 2.096 2.054 2.0102 1.9645 1.9165 1.8657 1.8117 

22 4.3009 3.4434 3.0491 2.8167 2.6613 2.5491 2.4638 2.3965 2.3419 2.2967 2.2258 2.1508 2.0707 2.0283 1.9842 1.938 1.8894 1.838 1.7831 

23 4.2793 3.4221 3.028 2.7955 2.64 2.5277 2.4422 2.3748 2.3201 2.2747 2.2036 2.1282 2.0476 2.005 1.9605 1.9139 1.8648 1.8128 1.757 

24 4.2597 3.4028 3.0088 2.7763 2.6207 2.5082 2.4226 2.3551 2.3002 2.2547 2.1834 2.1077 2.0267 1.9838 1.939 1.892 1.8424 1.7896 1.733 

25 4.2417 3.3852 2.9912 2.7587 2.603 2.4904 2.4047 2.3371 2.2821 2.2365 2.1649 2.0889 2.0075 1.9643 1.9192 1.8718 1.8217 1.7684 1.711 

26 4.2252 3.369 2.9752 2.7426 2.5868 2.4741 2.3883 2.3205 2.2655 2.2197 2.1479 2.0716 1.9898 1.9464 1.901 1.8533 1.8027 1.7488 1.6906 

27 4.21 3.3541 2.9604 2.7278 2.5719 2.4591 2.3732 2.3053 2.2501 2.2043 2.1323 2.0558 1.9736 1.9299 1.8842 1.8361 1.7851 1.7306 1.6717 

28 4.196 3.3404 2.9467 2.7141 2.5581 2.4453 2.3593 2.2913 2.236 2.19 2.1179 2.0411 1.9586 1.9147 1.8687 1.8203 1.7689 1.7138 1.6541 

29 4.183 3.3277 2.934 2.7014 2.5454 2.4324 2.3463 2.2783 2.2229 2.1768 2.1045 2.0275 1.9446 1.9005 1.8543 1.8055 1.7537 1.6981 1.6376 

30 4.1709 3.3158 2.9223 2.6896 2.5336 2.4205 2.3343 2.2662 2.2107 2.1646 2.0921 2.0148 1.9317 1.8874 1.8409 1.7918 1.7396 1.6835 1.6223 

40 4.0847 3.2317 2.8387 2.606 2.4495 2.3359 2.249 2.1802 2.124 2.0772 2.0035 1.9245 1.8389 1.7929 1.7444 1.6928 1.6373 1.5766 1.5089 

60 4.0012 3.1504 2.7581 2.5252 2.3683 2.2541 2.1665 2.097 2.0401 1.9926 1.9174 1.8364 1.748 1.7001 1.6491 1.5943 1.5343 1.4673 1.3893 

120 3.9201 3.0718 2.6802 2.4472 2.2899 2.175 2.0868 2.0164 1.9588 1.9105 1.8337 1.7505 1.6587 1.6084 1.5543 1.4952 1.429 1.3519 1.2539 

∞ 3.8415 2.9957 2.6049 2.3719 2.2141 2.0986 2.0096 1.9384 1.8799 1.8307 1.7522 1.6664 1.5705 1.5173 1.4591 1.394 1.318 1.2214 1 

 

 

 

 

 

 

 

F Table for α =0.025 

 

/ df1=1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 ∞ 

df2=

1 
647.789 799.5 864.163 899.5833 921.8479 937.1111 948.2169 956.6562 963.2846 968.6274 976.7079 984.8668 993.1028 997.2492 1001.414 1005.598 1009.8 1014.02 1018

.258 

2 38.5063 39.000 39.1655 39.2484 39.2982 39.3315 39.3552 39.373 39.3869 39.398 39.4146 39.4313 39.4479 39.4562 39.465 39.473 39.481 39.49 39.4
98 

3 17.4434 16.044
1 

15.4392 15.101 14.8848 14.7347 14.6244 14.5399 14.4731 14.4189 14.3366 14.2527 14.1674 14.1241 14.081 14.037 13.992 13.947 13.9
02 

4 12.2179 10.649
1 

9.9792 9.6045 9.3645 9.1973 9.0741 8.9796 8.9047 8.8439 8.7512 8.6565 8.5599 8.5109 8.461 8.411 8.36 8.309 8.25
7 

5 10.007 8.4336 7.7636 7.3879 7.1464 6.9777 6.8531 6.7572 6.6811 6.6192 6.5245 6.4277 6.3286 6.278 6.227 6.175 6.123 6.069 6.01
5 

6 8.8131 7.2599 6.5988 6.2272 5.9876 5.8198 5.6955 5.5996 5.5234 5.4613 5.3662 5.2687 5.1684 5.1172 5.065 5.012 4.959 4.904 4.84
9 

7 8.0727 6.5415 5.8898 5.5226 5.2852 5.1186 4.9949 4.8993 4.8232 4.7611 4.6658 4.5678 4.4667 4.415 4.362 4.309 4.254 4.199 4.14
2 

8 7.5709 6.0595 5.416 5.0526 4.8173 4.6517 4.5286 4.4333 4.3572 4.2951 4.1997 4.1012 3.9995 3.9472 3.894 3.84 3.784 3.728 3.67 

9 7.2093 5.7147 5.0781 4.7181 4.4844 4.3197 4.197 4.102 4.026 3.9639 3.8682 3.7694 3.6669 3.6142 3.56 3.505 3.449 3.392 3.33
3 

10 6.9367 5.4564 4.8256 4.4683 4.2361 4.0721 3.9498 3.8549 3.779 3.7168 3.6209 3.5217 3.4185 3.3654 3.311 3.255 3.198 3.14 3.08 

11 6.7241 5.2559 4.63 4.2751 4.044 3.8807 3.7586 3.6638 3.5879 3.5257 3.4296 3.3299 3.2261 3.1725 3.118 3.061 3.004 2.944 2.88
3 

12 6.5538 5.0959 4.4742 4.1212 3.8911 3.7283 3.6065 3.5118 3.4358 3.3736 3.2773 3.1772 3.0728 3.0187 2.963 2.906 2.848 2.787 2.72
5 

13 6.4143 4.9653 4.3472 3.9959 3.7667 3.6043 3.4827 3.388 3.312 3.2497 3.1532 3.0527 2.9477 2.8932 2.837 2.78 2.72 2.659 2.59
5 
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14 6.2979 4.8567 4.2417 3.8919 3.6634 3.5014 3.3799 3.2853 3.2093 3.1469 3.0502 2.9493 2.8437 2.7888 2.732 2.674 2.614 2.552 2.48
7 

15 6.1995 4.765 4.1528 3.8043 3.5764 3.4147 3.2934 3.1987 3.1227 3.0602 2.9633 2.8621 2.7559 2.7006 2.644 2.585 2.524 2.461 2.39
5 

16 6.1151 4.6867 4.0768 3.7294 3.5021 3.3406 3.2194 3.1248 3.0488 2.9862 2.889 2.7875 2.6808 2.6252 2.568 2.509 2.447 2.383 2.31
6 

17 6.042 4.6189 4.0112 3.6648 3.4379 3.2767 3.1556 3.061 2.9849 2.9222 2.8249 2.723 2.6158 2.5598 2.502 2.442 2.38 2.315 2.24
7 

18 5.9781 4.5597 3.9539 3.6083 3.382 3.2209 3.0999 3.0053 2.9291 2.8664 2.7689 2.6667 2.559 2.5027 2.445 2.384 2.321 2.256 2.18
7 

19 5.9216 4.5075 3.9034 3.5587 3.3327 3.1718 3.0509 2.9563 2.8801 2.8172 2.7196 2.6171 2.5089 2.4523 2.394 2.333 2.27 2.203 2.13
3 

20 5.8715 4.4613 3.8587 3.5147 3.2891 3.1283 3.0074 2.9128 2.8365 2.7737 2.6758 2.5731 2.4645 2.4076 2.349 2.287 2.223 2.156 2.08
5 

21 5.8266 4.4199 3.8188 3.4754 3.2501 3.0895 2.9686 2.874 2.7977 2.7348 2.6368 2.5338 2.4247 2.3675 2.308 2.246 2.182 2.114 2.04
2 

22 5.7863 4.3828 3.7829 3.4401 3.2151 3.0546 2.9338 2.8392 2.7628 2.6998 2.6017 2.4984 2.389 2.3315 2.272 2.21 2.145 2.076 2.00
3 

23 5.7498 4.3492 3.7505 3.4083 3.1835 3.0232 2.9023 2.8077 2.7313 2.6682 2.5699 2.4665 2.3567 2.2989 2.239 2.176 2.111 2.041 1.96
8 

24 5.7166 4.3187 3.7211 3.3794 3.1548 2.9946 2.8738 2.7791 2.7027 2.6396 2.5411 2.4374 2.3273 2.2693 2.209 2.146 2.08 2.01 1.93
5 

25 5.6864 4.2909 3.6943 3.353 3.1287 2.9685 2.8478 2.7531 2.6766 2.6135 2.5149 2.411 2.3005 2.2422 2.182 2.118 2.052 1.981 1.90
6 

26 5.6586 4.2655 3.6697 3.3289 3.1048 2.9447 2.824 2.7293 2.6528 2.5896 2.4908 2.3867 2.2759 2.2174 2.157 2.093 2.026 1.954 1.87
8 

27 5.6331 4.2421 3.6472 3.3067 3.0828 2.9228 2.8021 2.7074 2.6309 2.5676 2.4688 2.3644 2.2533 2.1946 2.133 2.069 2.002 1.93 1.85
3 

28 5.6096 4.2205 3.6264 3.2863 3.0626 2.9027 2.782 2.6872 2.6106 2.5473 2.4484 2.3438 2.2324 2.1735 2.112 2.048 1.98 1.907 1.82
9 

29 5.5878 4.2006 3.6072 3.2674 3.0438 2.884 2.7633 2.6686 2.5919 2.5286 2.4295 2.3248 2.2131 2.154 2.092 2.028 1.959 1.886 1.80
7 

30 5.5675 4.1821 3.5894 3.2499 3.0265 2.8667 2.746 2.6513 2.5746 2.5112 2.412 2.3072 2.1952 2.1359 2.074 2.009 1.94 1.866 1.78
7 

40 5.4239 4.051 3.4633 3.1261 2.9037 2.7444 2.6238 2.5289 2.4519 2.3882 2.2882 2.1819 2.0677 2.0069 1.943 1.875 1.803 1.724 1.63
7 

60 5.2856 3.9253 3.3425 3.0077 2.7863 2.6274 2.5068 2.4117 2.3344 2.2702 2.1692 2.0613 1.9445 1.8817 1.815 1.744 1.667 1.581 1.48
2 

12
0 

5.1523 3.8046 3.2269 2.8943 2.674 2.5154 2.3948 2.2994 2.2217 2.157 2.0548 1.945 1.8249 1.7597 1.69 1.614 1.53 1.433 1.31 

∞ 5.0239 3.6889 3.1161 2.7858 2.5665 2.4082 2.2875 2.1918 2.1136 2.0483 1.9447 1.8326 1.7085 1.6402 1.566 1.484 1.388 1.268 1 
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